Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20

Search results for: obstacle avoidance

20 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244
19 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
18 Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles

Authors: Reza Hossseynie, Amir Jafari

Abstract:

This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.

Keywords: Steering, obstacle avoidance, mobile robots, constrained directions control, artificial potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
17 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
16 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization

Authors: Lana Dalawr Jalal

Abstract:

This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.

Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
15 Hybrid Control Mode Based On Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: Autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
14 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S

Authors: Mohammad Javad Mollakazemi, Farhad Asadi

Abstract:

In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.

Keywords: Limit cycles, Nonlinear dynamical system, Real time obstacle avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
13 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: Autonomous driving, Obstacle avoidance, Optimal control, Path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
12 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line Following Using PIC and ATMEL Microcontrollers

Authors: Ibraheem K. Ibraheem

Abstract:

The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.

Keywords: Color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
11 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbors are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: Formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
10 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson

Abstract:

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6465
9 Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract:

This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations

 

Keywords: Lyapunov-based Control Scheme, Motion planning, Practical stability, Swarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
8 Designing of Multi-Agent Rescue Robot: Development and Basic Experiments of Master-Slave Type Rescue Robots

Authors: J. Lin, T. C. Kuo, C. -Y. Gau, K. C. Liu, Y. J. Huang, J. D. Yu, Y. W. Lin

Abstract:

A multi-agent type robot for disaster response in calamity scene is proposed in this paper. The proposed grouped rescue robots can perform cooperative reconnaissance and surveillance to achieve a given rescue mission. The multi-agent rescue of dual set robot consists of one master set and three slave units. The research for this rescue robot system is going to detect at harmful environment where human is unreachable, such as the building is infected with virus or the factory has hazardous liquid in effluent. As a dual set robot, with Bluetooth and communication network, the master set can connect with slave units and send information back to computer by wireless and monitor. Therefore, rescuer can be informed the real-time information in a calamity area. Furthermore, each slave robot is able to obstacle avoidance by ultrasonic sensors, and encodes distance and location by compass. The master robot can integrate every devices information to increase the efficiency of prospected and research unknown area.

Keywords: Designing of multi-agent rescue robot, development and basic experiments of master-slave type rescue robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
7 Adaptive Path Planning for Mobile Robot Obstacle Avoidance

Authors: Rong-Jong Wai, Chia-Ming Liu

Abstract:

Generally speaking, the mobile robot is capable of sensing its surrounding environment, interpreting the sensed information to obtain the knowledge of its location and the environment, planning a real-time trajectory to reach the object. In this process, the issue of obstacle avoidance is a fundamental topic to be challenged. Thus, an adaptive path-planning control scheme is designed without detailed environmental information, large memory size and heavy computation burden in this study for the obstacle avoidance of a mobile robot. In this scheme, the robot can gradually approach its object according to the motion tracking mode, obstacle avoidance mode, self-rotation mode, and robot state selection. The effectiveness of the proposed adaptive path-planning control scheme is verified by numerical simulations of a differential-driving mobile robot under the possible occurrence of obstacle shapes.

Keywords: Adaptive Path Planning, Mobile Robot ObstacleAvoidance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
6 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments

Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo

Abstract:

In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.

Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
5 Mobile Robot Path Planning in a 2-Dimentional Mesh

Authors: Doraid Dalalah

Abstract:

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

Keywords: Mobile robot, Path Planning, Mesh, Potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
4 ZMP Based Reference Generation for Biped Walking Robots

Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven

Abstract:

Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.

Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
3 Simple Agents Benefit Only from Simple Brains

Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde

Abstract:

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Keywords: Neural network, probabilistic control, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
2 Sliding Mode Based Behavior Control

Authors: Selim Yannier, Asif Sabanovic, Ahmet Onat, Muhammet Bastan

Abstract:

In this work, we suggested a new approach for the control of a mobile robot capable of being a building block of an intelligent agent. This approach includes obstacle avoidance and goal tracking implemented as two different sliding mode controllers. A geometry based behavior arbitration is proposed for fusing the two outputs. Proposed structure is tested on simulations and real robot. Results have confirmed the high performance of the method.

Keywords: Autonomous Mobile Robot, Behavior Based Control, Fast Local Obstacle Avoidance, Sliding Mode Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1 Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

Authors: Poramate Manoonpong, Frank Pasemann, Florentin Wörgötter

Abstract:

This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional walking. As a result, through a sensorimotor loop this reactive neural controller enables the machines to explore a dynamic environment by avoiding obstacles, turn toward a light source, and then stop near to it.

Keywords: Recurrent neural networks, Walking robots, Modular neural control, Phototaxis, Obstacle avoidance behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369