
 

 

 
Abstract—The availability of inexpensive, yet competent 

hardware allows for increased level of automation and self-
optimization in the context of Industry 4.0. However, such agents 
require high quality information about their surroundings along with a 
robust strategy for collision avoidance, as they may cause expensive 
damage to equipment or other agents otherwise. Manually defining a 
strategy to cover all possibilities is both time-consuming and counter-
productive given the capabilities of modern hardware. This paper 
explores the idea of a model-free self-optimizing obstacle avoidance 
strategy for multiple autonomous agents in a simulated dynamic 
environment using the Q-learning algorithm. 
 

Keywords—Autonomous vehicles, industry 4.0, multi-agent 
system, obstacle avoidance, Q-learning, simulation.  

I. INTRODUCTION 

N recent years, the increased availability of high-accuracy 
sensors, inexpensive computational power and internet-

enabled devices democratized smart products and self-
optimizing systems in multiple domains. In the context of 
Industry 4.0, this development opens up the ability to assist 
humans with dangerous or repetitive work. Smart products span 
the range from simple, zero-intelligence products to proactive 
entities. Sensors play an important part in making a product 
smart, allowing it to detect and report problems, or even make 
decisions on its own [1]. As the manufacturing industry moves 
towards a more customer-driven market [2], companies are 
required to shorten product life cycles and reduce time-to 
market without negatively impacting quality and costs. Such a 
shift demands more decentralized, flexible control and 
increased robustness. The use of smart products in the form of 
autonomous guided vehicles (AGVs) may help improve 
effectiveness, safety and flexibility of resource transportation in 
the context of Industry 4.0 [3]. However, with great power 
comes great responsibility. Such autonomous agents must 
therefore have a solid strategy for avoiding collisions in a 
complex and dynamic environment. In order to manually define 
such a strategy, every conceivable and even unconceivable 
situation an AGV may find itself in must be examined and 
modelled. This is not only time-consuming and resource-
intensive, but also counter-productive given the capabilities of 
modern hardware, both in respect to raw computing power and 
sensory input and processing. This paper aims to investigate a 
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method for learning a general strategy by means of a model-free 
approach. Specifically, how to train multiple agents 
representing AGVs to avoid collisions in an unknown dynamic 
environment. To do this, a simple multi-agent simulator will be 
implemented and tested. Furthermore, a set of benchmarks for 
the system will be defined and run in order to measure learning 
performance and validate learned obstacle avoidance strategies. 
Performance will be discussed and further improvements to the 
approach will be suggested. 

II. RELATED WORK 

The use of both model-based and model-free learning 
combined with sensor data, smart products and autonomous 
agents have been documented in several instances. Relevant 
examples include [4] where they used LiDAR sensor data 
combined with odometer data to determine a robot’s position in 
an unknown environment. Simultaneous Localization and 
Mapping, along with A-star search, was used for path planning. 
Simulated trajectories based on the robot’s motion model were 
evaluated based on their ability to avoid obstacles and reach a 
predefined goal. This demonstrated how a LiDAR sensor could 
be utilized for obstacle avoidance in an unknown environment. 
However, this approach required a map to be created up-front, 
by letting the robot explore its environment exhaustively. 
During mapping, the robot was controlled manually using a 
game pad. 

A similar approach is the work by Malavaz et al. in which 
they examined a LiDAR-only based navigation algorithm for 
agricultural robots [5]. Here, they documented efforts in 
developing a general and robust approach for autonomous robot 
navigation in an unknown environment. In this case, the 
environment consisted of rows of crops with unknown spacing 
and size. A model of the environment was constructed in real-
time using line detection based on 2D point clouds collected by 
LiDAR. The robot was then tasked to move along detected lines 
in the crop and remove weeds. Placement of the LiDAR may 
affect performance if it is placed too low, as tall weeds may 
blind the sensor. Similarly, if the LiDAR is placed too high, it 
will not detect crops. The authors suggested using a 3D sensor 
to overcome these challenges. Furthermore, as this approach 
relied on LiDAR only, no visual information was available, and 
thus the robot was unable to identify the type of obstacle. This 
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becomes an issue when weeding crops, as the robot was unable 
to act according to the type of obstacle, i.e., a harmless obstacle 
(weeds) and a potentially harmful obstacle (rocks, branches 
etc.). However, the authors concluded that this approach was 
promising and served as a robust method when no prior 
information about an environment was available. 

In [6], the use of visual data combined with LiDAR scans 
was discussed. The authors used a set of extensive pre-collected 
image data to address the problem of global localization in an 
unknown indoor environment, dubbed “the kidnapped robot 
problem”. Their effort resulted in a solid basis for a strategy for 
the robot, with highly accurate results, the major drawback 
being the extensive manual effort required upfront. This model 
also becomes less useful when the environment changes 
visually.  

Combining multiple sensors to increase performance has also 
been discussed in [7]. In their work, they used an RGB-D 
camera and a 2D LiDAR in order to learn a classifier in 3D in a 
semi-supervised context. The classifier was trained online, 
eliminating the need for data to be collected prior to training. 
Combined with existing classifiers for the camera and 2D 
LiDAR, the authors managed to successfully train a human-
tracking classifier for a mobile service robot. 

III. APPROACH AND IMPLEMENTATION 

There already exist several excellent simulation platforms 
and environments for multi-agent and robotics experimentation 
and visualization [8], [9]. However, with all their extensive 
features, they also introduce computational overhead and in 
general offer higher level representations of robotics and smart 
products. As more fine-grained control and low-level tinkering 
ability were desired, it was decided to implement a simple agent 
simulator from scratch. This simulator was designed and 
implemented to serve a single objective only, this being the 
visualization of multiple agents navigating in a dynamic 
environment. Furthermore, in order to be truly dynamic, a level 
of interactivity was also required. When running the program, 
the user should be able to add or remove obstacles in the 
environment. 

Agents learned to avoid the obstacles using Q-learning, 
which is a model-free reinforcement learning approach [10]. To 
detect the obstacles, a simple sensor was implemented. This 
virtual sensor could report distance d and relative angle a of an 
agent’s closest obstacle. Distance and angle values were 
discretized to construct the state space, defined as a 2D matrix 
of width W and height H. Sensor values were discretized to a’ 
and d’ using the following formulae: 

 

𝑎 𝐻 1  (1) 

 
and 
 

𝑑 𝑊 1 . (2) 

 
For the experiments conducted and results presented in this 

paper, W = 20 and H = 25. 

 

Fig. 1 Virtual sensor range, discretization, and state space mapping 
 

Fig. 1 (a) shows a visual representation of the state space, as 
seen by the sensor of a square agent. A circular obstacle is 
present within the sensor’s range, and its position and relative 
angle defines the current state of the agent. The corresponding 
state matrix and agent position is shown in Fig. 1 (b). In every 
state, an agent may take one of three actions: turn left, turn right, 
or keep going. For example, in the situation seen in Fig. 1, the 
agent should either A) keep going or B) turn right. Both actions 
would yield a positive reward in the next time step, with B) 
being the best action. The reward received was based on the 
distance from the obstacle in the current state compared to the 
previous state. However, if the agent turned left, it would 
receive a smaller reward, since its distance to the obstacle 
would decrease compared to not deviating from its initial 
course. In order to drive exploration, agents were programmed 
to take a random action in 5% of cases, regardless of prior 
knowledge.  

Following the standard Q-learning algorithm definition (6.6, 
p. 157) in [10], empty q- and r-matrices were initialized and 
then populated by letting the agent roam its environment in a 
random fashion. 

To demonstrate the performance of the simulator, a set of 
benchmarks were defined, listed in Table I.  

 
TABLE I 

BENCHMARK DEFINITIONS 

ID Number of agents Type of obstacle 

1 5 100 static obstacles 

2 5 
100 initial static obstacles, with 100 static 

obstacles added after 30 seconds 

3 10 
100 initial static obstacles, with 100 static 

obstacles added after 30 seconds

4 10 100 dynamic obstacles disappearing and 
appearing randomly every 2 seconds

5 20 
100 initial static obstacles, with 100 static 

obstacles added after 30 sec.

6 20 
100 dynamic obstacles disappearing and 

appearing randomly every 2 seconds
7 20 200 static obstacles 

 

Benchmarks were conducted in two configurations, where in 
the first, agents did not share knowledge and maintained their 
own set of q- and r-matrices. For the next set of benchmarks, 
agents were able to communicate and share experience in the 
form of q- and r-matrices. The performance was measured in 
the form of collisions over time and the total number of 
collisions. To account for the random nature of the simulation, 
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each benchmark was performed 10 times and the values 
averaged. This also meant that running the simulator for longer 
than 60 seconds for each benchmark became impractical. 

All benchmarks were performed and timed on a system with 
the following specifications: 
 CPU: AMD Ryzen7 5800X@4.4GHz 
 Memory: 32 Gb 
 Windows 10 20H2 64-bit build 19042. 

IV. RESULTS 

For visualization purposes, agents representing AGVs were 

rendered as solid-colored squares, with a straight line 
representing the current heading and sensor range. Each agent 
also left a trail to easier track their movements in the 
environment. Obstacles were randomly generated and 
visualized as black dots. Furthermore, the last action taken 
along with the reward received was displayed in a label attached 
to each agent (Fig. 3). The program consisted of an interactive 
window where it was possible to add or remove obstacles by 
left- and right-clicking in the simulator area as shown in Fig. 2. 
The simulation was set to run automatically, with agents 
exploring the environment as soon as the program was 
launched. 

 

 

Fig. 2 Screenshot of simulator window 
 

In the first seconds of the simulation, agents often left the 
designated area. Over time, agents started to learn to avoid the 
obstacles, as well as staying within the defined world boundary, 
as may be seen in Fig. 3. 

 

 

Fig. 3 An agent with status label avoiding obstacles 
 
 Figs. 4-10 show the number of collisions over time (a) along 

with the total number of collisions (b) in individual knowledge 
mode (black) and shared knowledge mode (gray). 

V. DISCUSSION OF RESULTS 

Letting autonomous agents roam around in a random fashion 
is only practical in a simulated environment, where no physical 
damage can be done to obstacles in the case of collisions. This 
random exploration enabled learning without any upfront 

knowledge of the environment, nor the position of obstacles. 
This is the major benefit of the proposed approach. When 
examining the results in Figs. 4-9, it is clear that the number of 
agents has an impact on learning performance. As seen in Fig. 
4, when running the system with five agents, sharing knowledge 
is only slightly beneficial in the long run, and hurts short-term 
performance. When doubling the number of obstacles in the 
environment, sharing knowledge appears to become even less 
beneficial with few agents. It is clear from Fig. 5 that the 
number of collisions start to increase at this point. Also seen in 
Fig. 5, the number of collisions was consistently lower for the 
shared knowledge run up until the point where more obstacles 
were added. This may indicate that the agents’ strategy emerged 
too quickly to be able to adapt to the increased number of 
obstacles. A similar trend is seen in Fig. 6, where single- and 
multi-agent performance are similar up until more obstacles are 
added, even though the number of agents was double compared 
to benchmark 2. Performance deteriorates further in Fig. 7, 
where obstacles disappear and reappear randomly, although it 
appears to stabilize in the long term compared to Figs. 5 and 6. 
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Fig. 4 Benchmark 1 collisions per time step and total collisions 
 

 

Fig. 5 Benchmark 2 collisions per time step and total collisions 
 

 

Fig. 6 Benchmark 3 collisions per time step and total collisions 
 

 

Fig. 7 Benchmark 4 collisions per time step and total collisions 
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Fig. 8 Benchmark 5 collisions per time step and total collisions 
 

 

Fig. 9 Benchmark 6 collisions per time step and total collisions 
 

 

Fig. 10 Benchmark 7, after running the simulator for 40 minutes 
 
When increasing the number of agents to 20, performance of 

the shared knowledge approach (gray) starts to surpass that of a 
single agent (black). As seen in Fig. 8, multi-agent performance 
is only slightly worse than that of a single agent and starts to 
surpass it after an average of 50 seconds. The long-term total 
number of collisions drops below that of a single agent. 
Furthermore, when comparing Fig. 5 to Fig. 8, it shows that 
quadrupling the number of agents from five to 20 did not 
quadruple the total number of collisions in the shared 
knowledge case (gray). The results from Fig. 9 show the most 
promise, as both the number of collisions per time step (a) and 
the number of total collisions (b) are lower in the multi-agent 
approach. Performance also seems to be more stable in the long 
term. As this was a highly dynamic environment, with obstacles 
changing positions every 2 seconds, this approach to learn a 
collision avoidance strategy with multiple agents shows some 
promise. The fact that an agent is indeed able to learn a strategy 
to avoid obstacles is perhaps best observed when looking at Fig. 
3, where the path taken to avoid the obstacles can be seen 
clearly. 

Running the simulator for longer did not produce better 
results, as shown in Fig. 10. Performance was stable and the 
total number of collisions (b) increased in a linear fashion. 

The virtual sensor implemented in the simulator was only 
able to sense its nearest obstacle. This means that an agent was 
only able to make decisions that were rewarding in the short 
run. An agent could for example navigate head-first into a 
cluster of obstacles in order to avoid a single obstacle, and then 
be unable to successfully avoid all obstacles in the cluster. 
Extending the virtual sensor to classify a cluster of obstacles as 
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a general region to avoid is expected to help increase 
performance in this regard. 

The way the state space was discretized is also expected to 
have negatively impacted performance. In order to remedy this, 
some alternative approach to continuous state space 
reinforcement learning should be investigated. One approach 
that may produce better results is the use of deep reinforcement 
learning, for instance deep-Q-learning. An alternative approach 
could be to increase the resolution of the virtual sensor and thus 
the size of the Q- and r-matrix. However, this may impact 
performance in other ways, especially if using this approach on 
a physical robot with limited computational power. The 
approach presented in this paper requires only simple 
computations for mapping and reward calculation. Finally, 
although implementing a simulator from scratch gave full 
control over all aspects of the program, visualization is minimal 
compared to existing simulators. The basic Q-learning 
approach presented in this paper can easily be ported to various 
programming languages and simulation environment if desired. 

VI. CONCLUSION 

Results indicate that using a model-free reinforcement 
learning approach in order to learn an obstacle avoidance 
strategy in an unknown and dynamic environment has some 
potential. Its major benefit compared to similar work is that no 
prior information about the environment is required, and agents 
are able to learn in a virtual environment without human 
intervention. Increasing the number of agents and having them 
share knowledge was beneficial compared to fewer agents, 
especially in a highly dynamic environment. Running agents in 
this random fashion in a virtual environment is also safer 
compared to a physical environment. Although visualization is 
minimal compared to comparable simulators, it is possible to 
notice some learning progress by observing the movement of 
the simulated agents. With some more attention to sensor 
implementation and state space definition, the proposed 
approach may have some potential to be useful for avoiding 
dynamic obstacles when applied to autonomous resource 
transportation vehicles in enclosed spaces within the context of 
Industry 4.0. 

APPENDIX 

A complete copy of the simulator source code may be found 
at bitbucket.org/ADJansson/selfdrivingcarsimulator 
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