Search results for: shear layer
1295 Seismic Response of Hill Side Step-back RC Framed Buildings with Shear Wall and Bracing System
Authors: Birendra Kumar Bohara
Abstract:
The hillside building shows different behavior as a flat ground building in lateral loading. Especially the step back building in the sloping ground has different seismic behavior. The hillside building 3D model having different types of structural elements is introduced and analyzed with a seismic effect. The structural elements such as the shear wall, steel, and concrete bracing are used to resist the earthquake load and compared with without using any shear wall and bracing system. The X, inverted V, and diagonal bracing are used. The total nine models are prepared in ETABs finite element coding software. The linear dynamic analysis is the response spectrum analysis (RSA) carried out to study dynamic behaviors in means of top story displacement, story drift, fundamental time period, story stiffness, and story shear. The results are analyzed and made some decisions based on seismic performance. It is also observed that it is better to use the X bracing system for lateral load resisting elements.
Keywords: Step-back buildings, bracing system, hill side buildings, response spectrum method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5191294 Determination of Extreme Shear Stresses in Teaching Mechanics Using Freely Available Computer Tools
Authors: Rado Flajs
Abstract:
In the present paper the extreme shear stresses with the corresponding planes are established using the freely available computer tools like the Gnuplot, Sage, R, Python and Octave. In order to support these freely available computer tools, their strong symbolical and graphical abilities are illustrated. The nature of the stationary points obtained by the Method of Lagrangian Multipliers can be determined using freely available computer symbolical tools like Sage. The characters of the stationary points can be explained in the easiest way using freely available computer graphical tools like Gnuplot, Sage, R, Python and Octave. The presented figures improve the understanding of the problem and the obtained solutions for the majority of students of civil or mechanical engineering.
Keywords: engineering, continuum mechanics, extreme shear stresses, Gnuplot, Sage, R, Python, Octave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891293 Deformation and Crystallization in a 7075-T651 Friction Stir Weld
Authors: C. S. Paglia
Abstract:
The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.
Keywords: AA7075-T651, friction stir welding, deformation, crystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7051292 Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer
Authors: Watcharee Rattanasakulthong, Pichai Sirisangsawang, Supree Pinitsoontorn
Abstract:
Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.
Keywords: Co-Cu films, Under-layers, Sputtering, Surface roughness, Magnetic properties, Atomic force microscopy (AFM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441291 Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study
Authors: Dmytro Ostroushko, Karel Saksl, Carsten Siemers, Zuzana Rihova
Abstract:
Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.Keywords: Titanium alloy, Ti-6246, chip formation, machining, shear zone, microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17411290 Steel–CFRP Composite (CFRP Laminate Sandwiched between Mild Steel Strips) and It-s Behavior as Stirrup in Beams
Authors: Faris Abbas Jawad Uriayer, Mehtab Alam
Abstract:
In this present study, experimental work was conducted to study the effectiveness of newly innovated steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups. A total numbers of eight concrete beams were tested under four point loads. Each beam measured 1600 mm long, 160mm width and 240 mm depth. The beams were reinforced with different shear reinforcements; one without stirrups, one with steel stirrups and six with different types and numbers of steel-CRFR stirrups. Test results indicated that the steel-CFRP stirrups had enhanced the shear strength capacity of beams. Moreover, the tests revealed that steel- CFRP stirrups reached to their ultimate tensile strength unlike FRP stirrups which rupture at much lower level than their ultimate strength as werereported in various researches.Keywords: Steel-CFRP Composite, Stirrups, Concrete Beams, Shear Span.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281289 Investigation into Behavior of Suspen-Domes in Comparison with Single-Layer Domes
Authors: Behnam Shirkhanghah, Ali Darabadi-Zare, Houshyar Eimani-Kalesar, Babak Pahlevan
Abstract:
Prestressing in structure increases ratio of load-bearing capacity to weight. Suspendomes are single-layer braced domes reinforced with cable and strut. Prestressing of cables alter value and distribution of stress in structure. In this study two configuration, diamatic and lamella domes is selected. Investigated domes have span of 100m with rise-to-span ratios of 0.1, 0.2, and 0.3. Single layer domes loaded under service load combinations according to ISO code. After geometric nonlinear analysis, models are designed with tubular and I-shaped sections then reinforced with cable and strut and converted to suspendomes. Displacements and stresses of some groups of nodes and elements in all of single-layer domes and suspendomes for three load combinations, symmetric snow, asymmetric snow and wind are compared. Variation due to suspending system is investigated. Suspendomes are redesigned and minimum possible weight after addition of cable and strut is obtained.
Keywords: Braced dome, Prestressing, Single-layer, Suspendome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28731288 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation
Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen
Abstract:
Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.
Keywords: Hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6391287 Towards Design of Context-Aware Sensor Grid Framework for Agriculture
Authors: Aqeel-ur-Rehman, Zubair A. Shaikh
Abstract:
This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.Keywords: Agriculture, Context-Awareness, Grid Computing, and Sensor Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25751286 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game
Authors: Jain-Shing Liu
Abstract:
In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16951285 Seismic Behavior of a Jumbo Container Crane in the Low Seismicity Zone Using Time-History Analyses
Authors: Huy Q. Tran, Bac V. Nguyen, Choonghyun Kang, Jungwon Huh
Abstract:
Jumbo container crane is an important part of port structures that needs to be designed properly, even when the port locates in low seismicity zone such as in Korea. In this paper, 30 artificial ground motions derived from the elastic response spectra of Korean Building Code (2005) are used for time history analysis. It is found that the uplift might not occur in this analysis when the crane locates in the low seismic zone. Therefore, a selection of a pinned or a gap element for base supporting has not much effect on the determination of the total base shear. The relationships between the total base shear and peak ground acceleration (PGA) and the relationships between the portal drift and the PGA are proposed in this study.
Keywords: Jumbo container crane, portal drift, time history analysis, total base shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9111284 CFD Analysis of a Centrifugal Fan for Performance Enhancement using Converging Boundary Layer Suction Slots
Authors: K. Vasudeva Karanth, N. Yagnesh Sharma
Abstract:
Generally flow behavior in centrifugal fan is observed to be in a state of instability with flow separation zones on suction surface as well as near the front shroud. Overall performance of the diffusion process in a centrifugal fan could be enhanced by judiciously introducing the boundary layer suction slots. With easy accessibility of CFD as an analytical tool, an extensive numerical whole field analysis of the effect of boundary layer suction slots in discrete regions of suspected separation points is possible. This paper attempts to explore the effect of boundary layer suction slots corresponding to various geometrical locations on the impeller with converging configurations for the slots. The analysis shows that the converging suction slots located on the impeller blade about 25% from the trailing edge, significantly improves the static pressure recovery across the fan. Also it is found that Slots provided at a radial distance of about 12% from the leading and trailing edges marginally improve the static pressure recovery across the fan.Keywords: Boundary layer suction converging slot, Flowseparation, Sliding mesh, Unsteady analysis, Recirculation zone, Jetsand wakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30211283 Influence of Different Asymmetric Rolling Processes on Shear Strain
Authors: A. Pesin, D. Pustovoytov, M. Sverdlik
Abstract:
Materials with ultrafine-grained structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include processes of asymmetric rolling (AR). Asymmetric rolling is a very effective way to create ultrafine-grained structures of metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine-grained structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. In this work finite element modeling of asymmetric rolling and metal forming processes in multiroll gauge was performed. Parameters of the processes which allow achieving significant values of shear strain were defined. The results of the study will be useful for the research of the evolution of ultra-fine metal structure in asymmetric rolling.
Keywords: Asymmetric rolling, equivalent strain, FEM, multiroll gauge, profile, severe plastic deformation, shear strain, sheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27211282 Linear Stability Characteristics of Wake-Shear Layers in Two-Phase Shallow Flows
Authors: Inta Volodko, Valentina Koliskina
Abstract:
Linear stability of wake-shear layers in two-phase shallow flows is analyzed in the present paper. Stability analysis is based on two-dimensional shallow water equations. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. Linear stability curves are obtained for different values of the particle loading parameter, the velocity ratio and the velocity deficit. It is shown that the increase in the velocity ratio destabilizes the flow. The particle loading parameter has a stabilizing effect on the flow. The role of the velocity deficit is also destabilizing: the increase of the velocity deficit leads to less stable flow.Keywords: Linear stability, Shallow flows, Wake-shear flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501281 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement
Authors: Fatema-Tuz-Zahura, Raquib Ahsan
Abstract:
Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.Keywords: Flat plate, finite element model, punching shear, reinforcement ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311280 Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography
Authors: Elham Moniri, Homayon Ahmad Panahi, Ahmad Izadi, Mohamad Mehdi Parvin, Atyeh Rahimi
Abstract:
In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.Keywords: Thin layer chromatography (TLC), Aspirin, Salicylic acid, Sulfosalycylic acid, Boric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23271279 Viscosity of Vegetable Oils and Biodiesel and Energy Generation
Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira
Abstract:
The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.Keywords: Biofuel, energy generation, vegetable oil, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96071278 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851277 Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery
Authors: Fitria Rahmawati, Nuryani, Liviana Wijayanti
Abstract:
This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structure. The Li intercalation into TiO2/Graphite and Cu- TiO2/Graphite were analyzed from the changes of its XRD pattern after it was used as electrode during discharging process. The XRD patterns were refined by Le Bail method in order to determine the crystal structure of the prepared materials. A specific capacity and the cycle ability measurement were carried out to study the performance of the prepared materials as negative electrode of the Li-ion battery. The specific capacity was measured during discharging process from fully charged until the cut off voltage. A 300 was used as a load. The result shows that the specific capacity of Li-ion battery with TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is higher than the specific capacity of Li-ion battery with pure graphite as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile deposition of Cu onto TiO2 layer does not increase the specific capacity, and the value even lower than the battery with TiO2/Graphite as electrode. The cycle ability of the prepared battery is only two cycles, due to the Li ribbon which was used as cathode became fragile and easily broken.Keywords: Cu-TiO2, electrode, graphite substrate, Li-ion battery, TiO2 layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551276 Investigation of Increasing the Heat Transfer from Flat Surfaces Using Boundary Layer Excitation
Authors: M.H.Ghaffari
Abstract:
The present study is concerned with effect of exciting boundary layer on increase in heat transfer from flat surfaces. As any increase in heat transfer between a fluid inside a face and another one outside of it can cause an increase in some equipment's efficiency, so at this present we have tried to increase the wall's heat transfer coefficient by exciting the fluid boundary layer. By a collision between flow and the placed block at the fluid way, the flow pattern and the boundary layer stability will change. The flow way inside the channel is simulated as a 2&3-dimensional channel by Gambit TM software. With studying the achieved results by this simulation for the flow way inside the channel with a block coordinating with Fluent TM software, it's determined that the figure and dimensions of the exciter are too important for exciting the boundary layer so that any increase in block dimensions in vertical side against the flow and any reduction in its dimensions at the flow side can increase the average heat transfer coefficient from flat surface and increase the flow pressure loss. Using 2&3-dimensional analysis on exciting the flow at the flow way inside a channel by cylindrical block at the same time with the external flow, we came to this conclusion that the heat flux transferred from the surface, is increased considerably in terms of the condition without excitation. Also, the k-e turbulence model is used.Keywords: Cooling, Heat transfer, Turbulence, Excitingboundary layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11991275 The Incorporation of In in GaAsN as a Means of N Fraction Calibration
Authors: H. Hashim, B. F. Usher
Abstract:
InGaAsN and GaAsN epitaxial layers with similar nitrogen compositions in a sample were successfully grown on a GaAs (001) substrate by solid source molecular beam epitaxy. An electron cyclotron resonance nitrogen plasma source has been used to generate atomic nitrogen during the growth of the nitride layers. The indium composition changed from sample to sample to give compressive and tensile strained InGaAsN layers. Layer characteristics have been assessed by high-resolution x-ray diffraction to determine the relationship between the lattice constant of the GaAs1-yNy layer and the fraction x of In. The objective was to determine the In fraction x in an InxGa1-xAs1-yNy epitaxial layer which exactly cancels the strain present in a GaAs1-yNy epitaxial layer with the same nitrogen content when grown on a GaAs substrate.Keywords: Indium, molecular beam epitaxy, nitrogen, straincancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131274 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads
Authors: T. H. Young, Y. J. Tsai
Abstract:
A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work. The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.
Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7671273 Marangoni Convection in a Fluid Layer with Internal Heat Generation
Authors: Norfifah Bachok, Norihan Md. Arifin
Abstract:
In this paper we use classical linear stability theory to investigate the effects of uniform internal heat generation on the onset of Marangoni convection in a horizontal layer of fluid heated from below. We use a analytical technique to obtain the close form analytical expression for the onset of Marangoni convection when the lower boundary is conducting with free-slip condition. We show that the effect of increasing the internal heat generation is always to destabilize the layer.Keywords: Marangoni convection, heat generation, free-slip
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871272 Ignition Analysis in Supersonic Turbulent Mixing Layer
Authors: A. M. Tahsini
Abstract:
Numerical study of two dimensional supersonic hydrogen-air mixing layer is performed to investigate the effect of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes and one equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion.Keywords: Ignition, Mixing layer, Numerical simulation, Supersonic combustion, Turbulence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241271 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel
Authors: L. Torchane
Abstract:
In this work, our goal is to optimize the nitriding treatment at a low-temperature of the steel 32CrMoV13 using gas mixtures of ammonia, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chromium-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge has been applied by the mastery of the growth of the γ' combination layer on the α diffusion layer in the case of the industrial steel 32CrMoV13.Keywords: Diffusion of nitrogen, Gaseous nitriding, Layer growth kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15851270 Unsteady Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid
Authors: Roslinda Nazar, Anuar Ishak, Ioan Pop
Abstract:
Unsteady boundary layer flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane is studied in this paper. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The transformed unsteady boundary layer equations are solved numerically using the Keller-box method for the whole transient from the initial state to final steady-state flow. Numerical results are obtained for the velocity and microrotation distributions as well as the skin friction coefficient for various values of the material parameter K. It is found that there is a smooth transition from the small-time solution to the large-time solution.Keywords: Boundary layer, micropolar fluid, stretching surface, unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23611269 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects
Authors: M. Bayareh, S. Mortazavi
Abstract:
The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.Keywords: drop migration, shear flow, front-tracking method, finite difference method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20181268 The Effect of Shear Wall Positions on the Seismic Response of Frame-Wall Structures
Authors: Anas M. Fares
Abstract:
The configuration of shear walls in plan of building will affect the seismic design of structure. The position of these walls will change the stiffness of each floor in the structure, the diaphragm center of mass displacement, and the drift of floor. Structural engineers preferred to distribute the walls in buildings to make the center of mass almost close enough to the center of rigidity, but to make this condition satisfied, they have many choices: construct the walls on the perimeter, or use intermediate walls, or use walls as core. In this paper and by using ETABS, each case is studied and compared to other cases according to three parameters: lateral stiffness, diaphragm displacement, and drift. It is found that the core walls are the best choice for the position of the walls in the buildings to resist earthquake loads.
Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, seismic, ASCE7-16 code, ACI code, stiffness, drift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11481267 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates
Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes
Abstract:
The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.
Keywords: Composites materials, laminated composite plate, shear deformation theory of plates, finite element analysis, free vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8541266 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.
Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551