@article{(Open Science Index):https://publications.waset.org/pdf/6356,
	  title     = {Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery},
	  author    = {Fitria Rahmawati and  Nuryani and  Liviana Wijayanti},
	  country	= {},
	  institution	= {},
	  abstract     = {This research study the application of the immobilized
TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative
electrode or anode for Li-ion battery. The titania layer was produced
through chemical bath deposition method, meanwhile Cu particles
were deposited electrochemically. A material can be used as an
electrode as it has capability to intercalates Li ions into its crystal
structure. The Li intercalation into TiO2/Graphite and Cu-
TiO2/Graphite were analyzed from the changes of its XRD pattern
after it was used as electrode during discharging process. The XRD
patterns were refined by Le Bail method in order to determine the
crystal structure of the prepared materials. A specific capacity and the
cycle ability measurement were carried out to study the performance
of the prepared materials as negative electrode of the Li-ion battery.
The specific capacity was measured during discharging process from
fully charged until the cut off voltage. A 300 was used as a load.
The result shows that the specific capacity of Li-ion battery with
TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is
higher than the specific capacity of Li-ion battery with pure graphite
as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile
deposition of Cu onto TiO2 layer does not increase the specific
capacity, and the value even lower than the battery with
TiO2/Graphite as electrode. The cycle ability of the prepared battery
is only two cycles, due to the Li ribbon which was used as cathode
became fragile and easily broken.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {7},
	  number    = {6},
	  year      = {2013},
	  pages     = {401 - 405},
	  ee        = {https://publications.waset.org/pdf/6356},
	  url   	= {https://publications.waset.org/vol/78},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 78, 2013},