Search results for: fiber beam-column model
7619 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10437618 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester
Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar
Abstract:
Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.
Keywords: Defects, forming, impact, induced properties, textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5237617 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation
Authors: Chong Zhang, Mu-Xuan Tao
Abstract:
In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.
Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6227616 Thermal Elastic Stress Analysis of Steel Fiber Reinforced Aluminum Composites
Authors: M. R. Haboğlu, A. Kurşun, Ş. Aksoy, H. Aykul, N. B. Bektaş
Abstract:
Athermal elastic stress analysis of steel fiber reinforced aluminum laminated composite plate is investigated. Four sides of the composite plate are clamped and subjected to a uniform temperature load. The analysis is performed both analytically and numerically. Laminated composite is manufactured via hot pressing method. The investigation of the effects of the orientation angle is provided. Different orientation angles are used such as [0°/90°]s, [30°/-30°]s, [45°/-45°]s, and [60/-60]s. The analytical solution is obtained via classical laminated composite theory and the numerical solution is obtained by applying finite element method via ANSYS.
Keywords: Laminated Composites, Thermo Elastic Stress, Finite Element Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27497615 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers
Authors: J. Zach, J. Hroudova, J. Brozovsky
Abstract:
Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.
Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25557614 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: Carbon fiber, hybrid yarns, electrostatic dissipative fabrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13807613 Fabrication and Characterization of Sawdust Composite Biodegradable Film
Authors: M.Z. Norashikin, M.Z. Ibrahim
Abstract:
This report shows the performance of composite biodegradable film from chitosan, starch and sawdust fiber. The main objectives of this research are to fabricate and characterize composite biodegradable film in terms of morphology and physical properties. The film was prepared by casting method. Sawdust fiber was used as reinforcing agent and starch as polymer matrix in the casting solution. The morphology of the film was characterized using atomic force microscope (AFM). The result showed that the film has smooth structure. Chemical composition of the film was investigated using Fourier transform infrared (FTIR) where the result revealed present of starch in the film. The thermal properties were characterized using thermal gravimetric analyzer (TGA) and differential scanning calorimetric (DSC) where the results showed that the film has small difference in melting and degradation temperature.Keywords: Sawdust, composite, film, biodegradable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26057612 Theoretical and Experimental Bending Properties of Composite Pipes
Authors: M. Stefanovska, S. Risteska, B. Samakoski, G. Maneski, B. Kostadinoska
Abstract:
Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis.Keywords: Bending properties, composite pipe, winding design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42527611 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.
Keywords: Exciton, Refractive index change, Extinction ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20137610 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids
Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann
Abstract:
In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.
Keywords: Defect evaluation, EMAT, mechanical testing, thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15187609 Critical Properties of Charged Filter Membranes for Their Applications in Filtration
Authors: S. Bokka
Abstract:
Fiber filter membranes have a high surface area-to-volume ratio and high porosity making them ideal for various filtration and separation applications. Using the conventional filter membrane, a filtration efficiency of > 95% can be achieved. Specific applications such as air and fuel filtration require nearly 100% filtration efficiency, which is harder to achieve using conventional filter membranes. To achieve high filtration efficiencies additional costs are incurred due to increasing the cost of membrane and operating cost. Due to the simultaneous electrostatic attraction and mechanical capture, the electret filters have shown nearly 100% filtration efficiency. This article presents an overview of the charged filter membrane, its applications, and a discussion on factors contributing to increasing charge.
Keywords: Charged fiber membrane, piezoelectric materials, filtration, polymeric materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687608 Shear Strengthening of RC T Beam using CFRP Laminate: A Review
Authors: M.B.S. Alferjani, A.A. Abdul Samad, N. Mohamad, M. Hilton, N. Ali
Abstract:
This paper presents the Literature Review of carbon fiber reinforced polymer (CFRP) strips to reinforced concrete (RC) as a strengthening solution for T-beams. Although a great deal of research has been carried out on Rectangular beams strengthened with Fibre-Reinforced Polymer composites (FRP), Fiber reinforced polymer (FRP) composites have been increasingly studied for their application in the flexural or shear strengthening of reinforced concrete (RC) members. A detailed discussion of the shearstrengthening repair with FRP is undertaken. This paper will be limited to research of CFRP material externally bonded to the tensile face of concrete beams. In particular, research studying the effect of externally applied CFRP materials on the shear performance of reinforced concrete beams will be reported.
Keywords: CFRP, Concrete, Flexural, FRP, Shear, Strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28627607 Comparison Mechanical and Chemical Treatments on Properties of Low Yield Bagasse Pulp During Recycling
Authors: Parizad Sheikhi, Mohammad Talaeipour
Abstract:
the effects of refining and alkaline chemicals on potential of recycling bleached chemical pulp of bagasse were investigated in this study. Recycling was done until three times. Handsheet properties such as, apparent density, light scattering coefficient, tear index, burst index, breaking length, and fold number according to TAPPI standard were measured. Water retention value also was used to considering the treatments during recycling. Refining enhanced the strength of recycled pulp by increasing fiber flexibility and swelling ability, whereas by applying chemical treatment didn't observe any improvement. The morphology of recycled fiber was considered with scanning electron microscopy (SEM).
Keywords: Bagasse pulp, chemical treatment, recycling, refining, scanning electron microscopy, water retention value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26827606 Microcrystalline Cellulose (MCC) From Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment
Authors: Ridzuan Ramli, Norhafzan Junadi, Mohammad D.H. Beg, Rosli M. Yunus
Abstract:
In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity.
Keywords: Oil palm empty fruit bunch, microcrystalline cellulose, ultrasonic, alkali treatment, X-ray diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39707605 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets
Authors: Shahriar Shahbazpanahi, Alaleh Kamgar
Abstract:
So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.
Keywords: Crack, FRP, shear, strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11937604 Surface Roughness Prediction Model for Grinding of Composite Laminate Using Factorial Design
Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram
Abstract:
Glass fiber reinforced polymer (GFRP) laminates have been widely used because of their unique mechanical and physical properties such as high specific strength, stiffness and corrosive resistance. Accordingly, the demand for precise grinding of composites has been increasing enormously. Grinding is the one of the obligatory methods for fabricating products with composite materials and it is usually the final operation in the assembly of structural laminates. In this experimental study, an attempt has been made to develop an empirical model to predict the surface roughness of ground GFRP composite laminate with respect to the influencing grinding parameters by factorial design approach of design of experiments (DOE). The significance of grinding parameters and their three factor interaction effects on grinding of GFRP composite have been analyzed in detail. An empirical equation has been developed to attain minimum surface roughness in GFRP laminate grinding.
Keywords: GFRP Laminates, Grinding, Surface Roughness, Factorial Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24527603 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform
Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.
Abstract:
This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.
Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28477602 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading
Authors: Y. S. Tai, M. Y. Huang, H. T. Hu
Abstract:
The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.
Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25247601 Some Physico-Chemical Characteristics and Mineral Contents of Gilaburu (Viburnum opulus L.) Fruits in Turkey
Authors: İsmail Hakkı Kalyoncu, Nilda Ersoy, Ayşe Yalcın Elidemir, Muhammed Emin Karalı
Abstract:
Gilaburu (Viburnum opulus L.) grown naturally in Anatolia. In this study, some physico-chemical (sugar, acid, protein, crude fat, crude fiber, ash etc.) characteristics and mineral composition of Gilaburu fruit have been investigated. The length, width, thickness, weight, total soluble solid, protein, crude ash, crude fiber and crude oil of fruit were found to be 1.12 cm, 1.58 cm, 1.87 cm, 0.87 g, 14.73 %, 0.2 %, 0.11 %, 6.56 % and 0.4 %, respectively. The seed of fruit mean weight, length, width and thickness were determinated as 0.08 g, 7.76 cm, 7.67 cm and 1.66, respectively. In addition 27 mineral elements (Al, Mg, Na, Ba, Ca, Ni, Cd, P, Cr, Pb, S, Cu, Se, Fe, K, Sr, Li, Z, V, Ag, Bi, Co, Mn, B, Ga, In, Ti) were analyzed. Gilaburu (Viburnum opulus L.) fruit was richest in potassium (10764.764 ppm), Mg (1289.088 ppm) and P (1304.169 ppm).Keywords: Gilaburu (Viburnum opulus L.), nutritional properties, physico-chemical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27697600 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites
Authors: Noor Zuhaira Abd Aziz, Rahmah Mohamed, Mohd Muizz Fahimi M.
Abstract:
Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical, mechanical and morphology properties were investigated. Field Emission Scanning Microscope (FeSEM) was used to investigate the impact fracture surfaces of the hybrid composite. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.
Keywords: Hybrid composites, Water absorption, Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26287599 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition
Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas
Abstract:
In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.
Keywords: Barley, digestive energy, horses, nutritional value, oats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22557598 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect
Authors: B. Akturk, N. Yuzer, N. Kabay
Abstract:
High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.
Keywords: High temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21677597 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door
Authors: Emin Z. Mahmud
Abstract:
This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.
Keywords: Behavior of masonry structures, Eurocode, fundamental frequency, masonry, shaking table test, strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5567596 Effect of Restaurant Fat on Milk Yield and Composition of Dairy Cows Limit-Fed Concentrate Diet with Free Access to Forage
Authors: Mofleh S. Awawdeh
Abstract:
Ten lactating multiparous Holstein cows were used in a cross-over design with two dietary treatments and 28-d periods (with 14 d as an adaptation) to study the effect of restaurant fat on milk production and composition. Each cow was offered 14.7 kg DM /d of the basal concentrate diet based on barley and corn (crude protein = 17.7%, neutral detergent fiber = 23.5%, and acid detergent fiber = 5.8% of dry matter) with free access to alfalfa. Dietary treatments were arranged as supplying each cow with 0 (CONTROL) or 150 g/day (RF) of restaurant fat. Supplemental RF did not significantly (P > 0.25) affect milk yield, composition, and composition yields, except for milk fat contents. Milk fat contents were depressed (P < 0.05) with supplemental RF. Our results indicate that RF could depress milk fat without affecting milk yield and that the depression in milk fat in response to RF precedes the depression in milk yield.Keywords: Dairy Cows, Restaurant Fat, Lipids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15907595 Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method
Authors: F. Karim
Abstract:
In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios.
Keywords: Triangular lattice index-guiding photonic crystal fiber, dispersion compensation, directed tabu search, synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13087594 Parametric Study on Grindability of GFRP Laminates Using Different Abrasives
Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram
Abstract:
A study on grindability of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) have been carried out to evaluate the significant parameters on wheel performance. Performance of Aluminum oxide and c-BN wheels during grinding of CSM GFRP laminate was evaluated in terms of grinding force and surface roughness during grinding. The cubic Boron Nitride wheel experiences higher tangential grinding forces components and lower normal force component than Aluminum oxide grinding wheels. In case of surface finish, Aluminum oxide grinding wheels outdo the cubic Boron Nitride grinding wheels.
Keywords: Grinding, glass fiber reinforced polymer laminates, grinding force, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17787593 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: Neural network, dry relaxation, knitting, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17607592 A Robust Software for Advanced Analysis of Space Steel Frames
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.
Keywords: Advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14637591 Examining Herzberg-s Two Factor Theory in a Large Chinese Chemical Fiber Company
Authors: Ju-Chun Chien
Abstract:
The validity of Herzberg-s Two-Factor Theory of Motivation was tested empirically by surveying 2372 chemical fiber employees in 2012. In the valid sample of 1875 respondents, the degree of overall job satisfaction was more than moderate. The most highly valued components of job satisfaction were: “corporate image," “collaborative working atmosphere," and “supervisor-s expertise"; whereas the lowest mean score was 34.65 for “job rotation and promotion." The top three job retention options rated by the participants were “good image of the enterprise," “good compensation," and “workplace is close to my residence." The overall evaluation of the level of thriving facilitation workplace reached almost to “mostly agree." For those participants who chose at least one motivator as their job retention options had significantly greater job satisfaction than those who chose only hygiene factors as their retention options. Therefore, Herzberg-s Two-Factor Theory of Motivation was proven valid in this study.Keywords: Employee job satisfaction, Job retention, Traditional business, Two-factor theory of motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54147590 Limitation Imposed by Polarization-Dependent Loss on a Fiber Optic Communication System
Authors: Farhan Hussain, M.S.Islam
Abstract:
Analytically the effect of polarization dependent loss on a high speed fiber optic communication link has been investigated. PDL and the signal's incoming state of polarization (SOP) have a significant co-relation between them and their various combinations produces different effects on the system behavior which has been inspected. Pauli's spin operator and PDL parameters are combined together to observe the attenuation effect induced by PDL in a link containing multiple PDL elements. It is found that in the presence of PDL the Q-factor and BER at the receiver undergoes fluctuation causing the system to be unstable and results show that it is mainly due to optical-signal-to-parallel-noise ratio (OSNItpar) that these parameters fluctuate. Generally the Q-factor, BER deteriorates as the value of average PDL in the link increases except for depolarized light for which the system parameters improves when PDL increases.Keywords: Bit Error Rate (BER), Optical-signal-to-noise ratio (OSNR), Polarization-dependent loss (PDL), State of polarization (SOP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725