Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: Neural network, dry relaxation, knitting, linear regression.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109339
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761References:
[1] Llonch, M. “La Competitividad de Los Distritos Catalanes del Género de Punto (1961-2004)”. Monografías de la Revista de Historia Industrial. Publicions de la Universitat de Barcelona, pp. 1-27, 2004.
[2] Capdevila, X. “Regulación de la Tricotosa Rectilínea y su Influencia Sobre la Longitud de Malla”, Boletín Intertex (U.P.C), vol.121, pp. 23- 29, 2002.
[3] Barretto, S. “Fabricación de Prendas en Tejido de Punto”, FADU UBA. Retrieved August 13, 2014, from http://cursos.fadu.uba.ar/apuntes/ Indumentaria%20I/unidad%20practica%20n%20%201/7- %20Fabricacion%20de%20prendas%20en%20tejido%20de%20punto.p df.
[4] Pocoroba, R. “Análisis de los factores que determinan la formación del pilling en tejido de punto”, Tesis inédita Maestro en Ciencias, Instituto Politécnico Nacional. 2006
[5] Henning, H. “Tipos de encogimiento de los géneros de punto de lana y su medida”, Conferencias Escuela Técnica Superior de Ingenieros Industriales de Terrasa, pp. 71-86, 1969.
[6] Lien, H. Lee, S. “A Method of Feature Selection for Textile Yarn Grading Using the Effective Distance between Clusters”, Text Res J, Vol. 72, no. 10, pp. 870-878, 2002.
[7] Pynckels, F, Kiekens, P. Sette, S. Van Langgenhove, L. Impe, K. “The Use of Neural Nets to Simulate the Spinning Process”. J Text Inst, vol. 88, no. 4, pp. 440-448, 1997.
[8] Park, C. Kang, T. “Objective Rating of Seam Pucker Using Neural Networks”, Text Res J, Vol. 67, no. 7, pp. 497-502, 1997.
[9] Ludwig, L. Sapozhnikova, E. Lunin, V. Rosenstiel, W. “Error Classification and Yield Prediction of Chips in Semiconductor Industry Applications”, Neur Comput App, Vol. 9, pp. 202–210, 2000.
[10] Verikas, A. Malmqvist, K. Bergman, L. Signahl, M. “Colour Classification by Neural Networks in Graphic Arts”, Neur Comput App, Vol. 7, pp. 52–64, 1998.
[11] Fazlollahtabar, H. Mahdavi-Amiri, N. “Design of a Neuro-Fuzzy– Regression Expert System to Estimate Cost in a Flexible Jobshop Automated Manufacturing System”, Int J Adv Manuf Technol, Vol. 67, pp. 1809–1823, 2013.
[12] Majumdar, A. Ghosh, A. “Yarn Strength Modelling Using Fuzzy Expert System”, Journal of Engineered Fibers and Fabrics Vol. 3, no. 4, pp. 61- 68, 2008.
[13] Hsin, L. Shyong, L. “Applications of Neural Networks for Grading Textile Yarns”, Neural Comput & Applic, Vol. 13, pp. 185–192, 2004.
[14] Baeza, R. and Cedillo, G. “Statistical Model of the Knitting System Dynamics”, Proceedings of the 15th Annual International Conference on Industrial Engineering Theory, Applications and Practice. México City, 2010.
[15] Zurada, M. “Introduction to Artificial Neural Systems”, West Publishing Company, New York, 1992.