Search results for: Steel buildings.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1251

Search results for: Steel buildings.

1041 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: Differential, spider gear, ANSYS, structural steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
1040 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5309
1039 Metallographic Analysis of Laser and Mechanically Formed HSLA Steel

Authors: L.C. Kgomari, R.K.K.Mbaya

Abstract:

This research was conducted to develop a correlation between microstructure of HSLA steel and the mechanical properties that occur as a result of both laser and mechanical forming processes of the metal. The technique of forming flat metals by applying laser beams is a relatively new concept in the manufacturing industry. However, the effects of laser energy on the stability of metal alloy phases have not yet been elucidated in terms of phase transformations and microhardness. In this work, CO2 laser source was used to irradiate the surface of a flat metal then the microstructure and microhardness of the metal were studied on the formed specimen. The extent to which the microstructure changed depended on the heat inputs of up to 1000 J/cm2 with cooling rates of about 4.8E+02 K/s. Experimental results revealed that the irradiated surface of a HSLA steel had transformed to austenitic structure during the heating process.

Keywords: Laser, Forming, Microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1038 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245
1037 Analysis of Incidences of Collapsed Buildings in the City of Douala, Cameroon from 2011-2020

Authors: T. G. L. J. Bikoko, J. C. Tchamba, S. Amziane

Abstract:

This study focuses on the problem of collapsed buildings within the city of Douala over the past ten years, and more precisely within the period from 2011 to 2020. It was carried out in a bid to ascertain the real causes of this phenomenon, which has become recurrent in the leading economic city of Cameroon. To achieve this, it was first necessary to review some works dealing with construction materials and technology as well as some case histories of structural collapse within the city. Thereafter, a statistical study was carried out on the results obtained. It was found that the causes of building collapses in the city of Douala are: Neglect of administrative procedures, use of poor quality materials, poor composition and confectioning of concrete, lack of Geotechnical study, lack of structural analysis and design, corrosion of the reinforcement bars, poor maintenance in buildings, and other causes. Out of the 46 cases of failure and collapse of buildings within the city of Douala, 7 of these were identified to have had no geotechnical study carried out, giving a percentage of 15.22%. It was also observed that out of the 46 cases of structural failure, 6 were as a result of lack of proper structural analysis and design giving a percentage of 13.04%. Subsequently, recommendations and suggestions are made in a bid to placing particular emphasis on the choice of materials, the manufacture and casting of concrete as well as the placement of the required reinforcements. All this guarantees the stability of a building.

Keywords: collapse buildings, Douala, structural collapse, Cameroon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
1036 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish

Abstract:

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
1035 Result Validation Analysis of Steel Testing Machines

Authors: Wasiu O. Ajagbe, Habeeb O. Hamzat, Waris A. Adebisi

Abstract:

Structural failures occur due to a number of reasons. These may include under design, poor workmanship, substandard materials, misleading laboratory tests and lots more. Reinforcing steel bar is an important construction material, hence its properties must be accurately known before being utilized in construction. Understanding this property involves carrying out mechanical tests prior to design and during construction to ascertain correlation using steel testing machine which is usually not readily available due to the location of project. This study was conducted to determine the reliability of reinforcing steel testing machines. Reconnaissance survey was conducted to identify laboratories where yield and ultimate tensile strengths tests can be carried out. Six laboratories were identified within Ibadan and environs. However, only four were functional at the time of the study. Three steel samples were tested for yield and tensile strengths, using a steel testing machine, at each of the four laboratories (LM, LO, LP and LS). The yield and tensile strength results obtained from the laboratories were compared with the manufacturer’s specification using a reliability analysis programme. Structured questionnaire was administered to the operators in each laboratory to consider their impact on the test results. The average value of manufacturers’ tensile strength and yield strength are 673.7 N/mm2 and 559.7 N/mm2 respectively. The tensile strength obtained from the four laboratories LM, LO, LP and LS are given as 579.4, 652.7, 646.0 and 649.9 N/mm2 respectively while their yield strengths respectively are 453.3, 597.0, 550.7 and 564.7 N/mm2. Minimum tensile to yield strength ratio is 1.08 for BS 4449: 2005 and 1.15 for ASTM A615. Tensile to yield strength ratio from the four laboratories are 1.28, 1.09, 1.17 and 1.15 for LM, LO, LP and LS respectively. The tensile to yield strength ratio shows that the result obtained from all the laboratories meet the code requirements used for the test. The result of the reliability test shows varying level of reliability between the manufacturers’ specification and the result obtained from the laboratories. Three of the laboratories; LO, LS and LP have high value of reliability with the manufacturer i.e. 0.798, 0.866 and 0.712 respectively. The fourth laboratory, LM has a reliability value of 0.100. Steel test should be carried out in a laboratory using the same code in which the structural design was carried out. More emphasis should be laid on the importance of code provisions.

Keywords: Reinforcing steel bars, reliability analysis, tensile strength, universal testing machine, yield strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
1034 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton i.e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind – earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several, spatially-distributed locations within each building. Three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls, on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. ATC- 40 capacity and demand spectra are utilized to get the modification factor (R) for the studied building. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: Seismic assessment, pushover analysis, ambient vibration, modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
1033 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: Flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
1032 A New Type Safety-Door for Earthquake Disaster Prevention - Part I

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

From the past earthquake events, many people get hurt at the exit while they are trying to go out of the buildings because of the exit doors are unable to be opened. The door is not opened because it deviates from its the original position. The aim of this research is to develop and evaluate a new type safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. The proposed door is composed of three components: outer frame joined to the wall, inner frame (door frame) and circular hollow section connected to the inner and outer frame which is used as seismic energy dissipating device.

Keywords: Earthquake disaster, FE analysis, Low yield point steel, Safety-doors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
1031 Effects of Blast Load on Historic Stone Masonry Buildings in Canada: A Review and Analytical Study

Authors: Abass Braimah, Maha Hussein Abdallah

Abstract:

The global ascendancy of terrorist attacks on building infrastructure with economic and heritage significance has increased awareness of the possibility of terrorism in Canada. Many structures in Canada that are at risk of terrorist attacks include government buildings, built many years ago of historic stone masonry construction. Although many researchers are investigating ways to retrofit masonry stone buildings to mitigate the effect of blast loadings, lack of knowledge on the dynamic behavior of historic stone masonry structures under blast loads makes it difficult to ascertain the effectiveness of the retrofitting techniques. This paper presents a review of open-source literature for the experimental and numerical stone masonry structures under blast loads. This review yielded very little information of the response of the historic stone masonry structures under blast loads. Thus, a comprehensive study is needed to understand the blast load effects on historic stone masonry buildings. The out-of-plane response of historic masonry structures to blast loads is investigated by using single-degree-of-freedom analysis. This approach presents equations that can be used effectively in the analysis of historic masonry walls to out-of-plane blast loading.

Keywords: Blast loads, historical buildings, masonry structure, single-degree-of-freedom analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
1030 Enhancing Seismic Performance of Ductile Moment Frames with Delayed Wire-Rope Bracing Using Middle Steel Plate

Authors: Babak Dizangian, Mohammad Reza Ghasemi, Akram Ghalandari

Abstract:

Moment frames have considerable ductility against cyclic lateral loads and displacements; however, if this feature causes the relative displacement to exceed the permissible limit, it can impose unfavorable hysteretic behavior on the frame. Therefore, adding a bracing system with the capability of preserving the capacity of high energy absorption and controlling displacements without a considerable increase in the stiffness is quite important. This paper investigates the retrofitting of a single storey steel moment frame through a delayed wire-rope bracing system using a middle steel plate. In this model, the steel plate lies where the wire ropes meet, and the model geometry is such that the cables are continuously under tension so that they can take the most advantage of the inherent potential they have in tolerating tensile stress. Using the steel plate also reduces the system stiffness considerably compared to cross bracing systems and preserves the ductile frame’s energy absorption capacity. In this research, the software models of delayed wire-rope bracing system have been studied, validated, and compared with other researchers’ laboratory test results.

Keywords: Ductile moment frame, delayed wire rope bracing, cyclic loading, hysteresis curve, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
1029 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296
1028 Fuzzy Expert System Design for Determining Wearing Properties of Nitrided and Non Nitrided Steel

Authors: Serafettin Ekinci, Kursat Zuhtuogullari

Abstract:

This paper proposes a Fuzzy Expert System design to determine the wearing properties of nitrided and non nitrided steel. The proposed Fuzzy Expert System approach helps the user and the manufacturer to forecast the wearing properties of nitrided and non nitrided steel under specified laboratory conditions. Surfaces of the engineering components are often nitrided for improving wear, corosion, fatigue specifications. A major property of nitriding process is reducing distortion and wearing of the metalic alloys. A Fuzzy Expert System was developed for determining the wearing and durability properties of nitrided and non nitrided steels that were tested under different loads and different sliding speeds in the laboratory conditions.

Keywords: Fuzzy Expert System Design, Rule Based Systems, Fatigue, Corrosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1027 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
1026 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

Authors: Khaled S. Ragab

Abstract:

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4256
1025 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment

Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek

Abstract:

The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).

Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
1024 Analytical Evaluation on Structural Performance and Optimum Section of CHS Damper

Authors: Daniel Y. Abebe, Jeonghyun Jang, Jaehyouk Choi

Abstract:

This study aims to evaluate the effective size, section and structural characteristics of circular hollow steel (CHS) damper. CHS damper is among steel dampers which are used widely for seismic energy dissipation because they are easy to install, maintain and are inexpensive. CHS damper dissipates seismic energy through metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. After calculating the effective size, which is found to be height to diameter ratio of √3, nonlinear FE analyses were carried out to evaluate the structural characteristics and effective section (diameter-to-ratio).

Keywords: Circular hollow steel damper, structural characteristics, effective size, effective section, large deformation, FE analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
1023 The Development of the Quality Management Processes for the Building and Environment of the Basic Education Schools

Authors: Suppara Charoenpoom

Abstract:

The objectives of this research was to design and develop a quality management of the school buildings and environment. A quantitative and qualitative mixed research methodology was used. The population sample included 14 directors of primary schools. Two research tools were used. The first research tool included an in-depth interview and questionnaire. The second research tool included the Quality Business Process and Quality Work Procedure, and a Key Performance Indicator of each activity. The statistics included mean and standard deviation. The findings for the development of a quality management process of buildings and environment administration of the basic schools consisted of one quality business process (QBP) and seven quality work processes (QWP). The result from the experts’ evaluation revealed that the process and implementation of quality management of the school buildings and environment has passed the inspection process with consensus. This implies that the process of quality management of the school buildings and environment is suitable for implementation. Moreover, the level of agreement in the feasibility of the implementation of this plan had the mean in the range of 0.64-1.00 which suggests the design of the new plan is acceptable.

Keywords: Process, Building, Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1022 Wireless Building Monitoring and Control System

Authors: J.-P. Skön, M. Johansson, O. Kauhanen, M. Raatikainen, K. Leiviskä, M. Kolehmainen

Abstract:

The building sector is the largest energy consumer and CO2 emitter in the European Union (EU) and therefore the active reduction of energy consumption and elimination of energy wastage are among the main goals in it. Healthy housing and energy efficiency are affected by many factors which set challenges to monitoring, control and research of indoor air quality (IAQ) and energy consumption, especially in old buildings. These challenges include measurement and equipment costs, for example. Additionally, the measurement results are difficult to interpret and their usage in the ventilation control is also limited when taking into account the energy efficiency of housing at the same time. The main goal of this study is to develop a cost-effective building monitoring and control system especially for old buildings. The starting point or keyword of the development process is a wireless system; otherwise the installation costs become too high. As the main result, this paper describes an idea of a wireless building monitoring and control system. The first prototype of the system has been installed in 10 residential buildings and in 10 school buildings located in the City of Kuopio, Finland.

Keywords: Energy efficiency, Indoor air quality, Monitoring system, Building automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
1021 Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements

Authors: S. Dorbani, M. Badaoui, D. Benouar

Abstract:

The goal of the paper is to highlight the effect of the building design and epicentral distance on the storey lateral displacements, for several reinforced concrete buildings (6, 9 and 12 stories). These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw = 6.8). Using the response spectrum method (modal spectral approach), the analysis is performed in both longitudinal and transverse directions. The building design is expressed through the fundamental period and epicentral distance is used to represent the earthquake effect variation on storey lateral displacements and interstory drift for the considered buildings.

Keywords: Epicentral distance, interstory drift, lateral displacement, natural period, reinforced concrete buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1020 Architecture Performance-Related Design Based on Graphic Parameterization

Authors: Wenzhe Li, Xiaoyu Ying, Grace Ding

Abstract:

Architecture plane form is an important consideration in the design of green buildings due to its significant impact on energy performance. The most effective method to consider energy performance in the early design stages is parametric modelling. This paper presents a methodology to program plane forms using MATLAB language, generating 16 kinds of plane forms by changing four designed parameters. DesignBuilder (an energy consumption simulation software) was proposed to simulate the energy consumption of the generated planes. A regression mathematical model was established to study the relationship between the plane forms and their energy consumption. The main finding of the study suggested that there was a cubic function relationship between the depth-ratio of U-shaped buildings and energy consumption, and there is also a cubic function relationship between the width-ratio and energy consumption. In the design, the depth-ratio of U-shaped buildings should not be less than 2.5, and the width-ratio should not be less than 2.

Keywords: Graphic parameterization, green building design, mathematical model, U-shaped buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
1019 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1018 The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings

Authors: H. Salonen, E. Castagnoli, C. Vornanen-Winqvist, R. Mikkola, C. Duchaine, L. Morawska, J. Kurnitski

Abstract:

A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.

Keywords: Fungi, concentration, indoor, school, contributing factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1017 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation

Authors: M. Elassaly

Abstract:

Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.

Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
1016 Research on Pressed Pile Test and Finite Element Analysis of Large-diameter Steel Pipe Pile of Zhanjiang Port

Authors: Ran Zhao, Zhi-liang Dong, You-yuan Wang, Lin-wang Su

Abstract:

In order to study pressed pile test and ultimate bearing capacity character of large-diameter steel pipe pile, based on two high-piled wharfs of Zhanjiang Port, pressed pile test and numerical simulation of three large-diameter steel pipe piles are analyzed in this paper. Anchored pile method is used to pressed pile test, and the curves of Q-s and ultimate bearing capacity are attained. Then the three piles are numerically simulated by ABAQUS, and results of numerical simulation and those of field test are comparatively analyzed. The results show that settlement value of numerical simulation is larger than that of field test in the process of loading, the difference value is widening with the increasing of load, and the ultimate difference value of settlement is 20% to 30%.

Keywords: Large-diameter steel pipe pile, field test, finite element analysis, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1015 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1014 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
1013 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: Dissimilar metals, soldering, joint strength, EMI shielding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
1012 Seismic Vulnerability Mitigation of Non-Engineered Buildings

Authors: Muhammad Tariq A. Chaudhary

Abstract:

The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centers and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, unreinforced masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard.

Keywords: Kashmir earthquake, non-engineered buildings, seismic hazard, structural details, structural strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943