Search results for: robot hand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1297

Search results for: robot hand

1117 Development of A Jacobean Model for A 4-Axes Indigenously Developed SCARA System

Authors: T.C.Manjunath, C. Ardil

Abstract:

This paper deals with the development of a Jacobean model for a 4-axes indigenously developed scara robot arm in the laboratory. This model is used to study the relation between the velocities and the forces in the robot while it is doing the pick and place operation.

Keywords: SCARA, Jacobean, Tool Configuration Vector, Computer Control , Visual Basic , Interfacing , Drivers,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
1116 Robotic Hands: Design Review and Proposal of New Design Process

Authors: Jimmy W. Soto Martell, Giuseppina Gini

Abstract:

In this paper we intend to ascertain the state of the art on multifingered end-effectors, also known as robotic hands or dexterous robot hands, and propose an experimental setup for an innovative task based design approach, involving cutting edge technologies in motion capture. After an initial description of the capabilities and complexity of a human hand when grasping objects, in order to point out the importance of replicating it, we analyze the mechanical and kinematical structure of some important works carried out all around the world in the last three decades and also review the actuators and sensing technologies used. Finally we describe a new design philosophy proposing an experimental setup for the first stage using recent developments in human body motion capture systems that might lead to lighter and always more dexterous robotic hands.

Keywords: Dexterous manipulation, grasp, multifingered endeffector, robotic hand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3900
1115 Visual Object Tracking and Interception in Industrial Settings

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.

Keywords: Object recognition, rendezvous planning, robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1114 Architecture Design of the Robots Operability Assessment Simulation Testbed

Authors: Sang Yeong Choi, Woo Sung Park

Abstract:

This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example.

Keywords: Robotic system, modeling and simulation, Simulation architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
1113 Indoor Mobile Robot Positioning Based on Wireless Fingerprint Matching

Authors: Xu Huang, Jing Fan, Maonian Wu, Yonggen Gu

Abstract:

This paper discusses the design of an indoor mobile robot positioning system. The problem of indoor positioning is solved through Wi-Fi fingerprint positioning to implement a low cost deployment. A wireless fingerprint matching algorithm based on the similarity of unequal length sequences is presented. Candidate sequences selection is defined as a set of mappings, and detection errors caused by wireless hotspot stability and the change of interior pattern can be corrected by transforming the unequal length sequences into equal length sequences. The presented scheme was verified experimentally to achieve the accuracy requirements for an indoor positioning system with low deployment cost.

Keywords: Fingerprint match, indoor positioning, mobile robot positioning system, Wi-Fi, wireless fingerprint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1112 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: Climbing stairs, FSBLC, ILC, Service robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
1111 Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients

Authors: Matjaž Divjak, Simon Zelič, Aleš Holobar

Abstract:

We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.

Keywords: Video-based attention monitoring, gaze estimation, stroke rehabilitation, user compliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1110 Minimizing of Target Localization Error using Multi-robot System and Particle Filters

Authors: Jana Puchyova

Abstract:

In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.

Keywords: Multi-robot system, particle filter, position estimation, target localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1109 Central Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot

Authors: Valeri A. Makarov, Ezequiel Del Rio, Manuel G. Bedia, Manuel G. Velarde, Werner Ebeling

Abstract:

We proposed the use of a Toda-Rayleigh ring as a central pattern generator (CPG) for controlling hexapodal robots. We show that the ring composed of six Toda-Rayleigh units coupled to the limb actuators reproduces the most common hexapodal gaits. We provide an electrical circuit implementation of the CPG and test our theoretical results obtaining fixed gaits. Then we propose a method of incorporation of the actuator (motor) dynamics in the CPG. With this approach we close the loop CPG – environment – CPG, thus obtaining a decentralized model for the leg control that does not require higher level intervention to the CPG during locomotion in a nonhomogeneous environments. The gaits generated by the novel CPG are not fixed, but adapt to the current robot bahvior.

Keywords: Central pattern generator, electrical circuit, hexapod robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1108 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs

Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez

Abstract:

Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.

Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35
1107 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
1106 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot

Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux

Abstract:

One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.

Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
1105 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism

Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa

Abstract:

This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.

Keywords: Lego NXT, autism, ANN (Artificial Neural Network), Backpropagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
1104 Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target

Authors: Ellips Masehian, Yalda Katebi

Abstract:

This paper presents a new sensor-based online method for generating collision-free near-optimal paths for mobile robots pursuing a moving target amidst dynamic and static obstacles. At each iteration, first the set of all collision-free directions are calculated using velocity vectors of the robot relative to each obstacle and target, forming the Directive Circle (DC), which is a novel concept. Then, a direction close to the shortest path to the target is selected from feasible directions in DC. The DC prevents the robot from being trapped in deadlocks or local minima. It is assumed that the target's velocity is known, while the speeds of dynamic obstacles, as well as the locations of static obstacles, are to be calculated online. Extensive simulations and experimental results demonstrated the efficiency of the proposed method and its success in coping with complex environments and obstacles.

Keywords: Dynamic Environment, Moving Target, RobotMotion Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
1103 Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction

Authors: Sung-Wook Shin, Sung-Taek Chung

Abstract:

Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms.

Keywords: Hand grip strength, EMG, visual reaction, endurance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
1102 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller

Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha

Abstract:

This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.

Keywords: Agricultural operations, autonomous driving, MARP, PLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
1101 Workspace Analysis of 6–6 Cable-Suspended Parallel Robots

Authors: Arian Bahrami, Amir Teimourian

Abstract:

In this paper, the effect of the moving platform size on the workspace volume of 6–6 cable-suspended parallel robots is investigated in details for different geometric configurations and orientations of the moving platform. The obtained hints can be used as a rule of thumb in designing this type of robot.

Keywords: Cable-suspended parallel robot, system analysis and design, workspace analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
1100 Robust Nonlinear Control of Two Links Robot Manipulator and Computing Maximum Load

Authors: Hasanifard Goran, Habib Nejad Korayem Moharam, Nikoobin Amin

Abstract:

A new robust nonlinear control scheme of a manipulator is proposed in this paper which is robust against modeling errors and unknown disturbances. It is based on the principle of variable structure control, with sliding mode control (SMC) method. The variable structure control method is a robust method that appears to be well suited for robotic manipulators because it requers only bounds on the robotic arm parameters. But there is no single systematic procedure that is guaranteed to produce a suitable control law. Also, to reduce chattring of the control signal, we replaced the sgn function in the control law by a continuous approximation such as tangant function. We can compute the maximum load with regard to applied torque into joints. The effectivness of the proposed approach has been evaluated analitically demonstrated through computer simulations for the cases of variable load and robot arm parameters.

Keywords: Variable structure control, robust control, switching surface, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1099 Robot-assisted Relaxation Training for Children with Autism Spectrum Disorders

Authors: V. Holeva, V. Aliki Nikopoulou, P. Kechayas, M. Dialechti Kerasidou, M. Papadopoulou, G. A. Papakostas, V. G. Kaburlasos, A. Evangeliou

Abstract:

Cognitive Behavioral Therapy (CBT) has been proven an effective tool to address anger and anxiety issues in children and adolescents with Autism Spectrum Disorders (ASD). Robot-enhanced therapy has been used in psychosocial and educational interventions for children with ASD with promising results. Whenever CBT-based techniques were incorporated in robot-based interventions, they were mainly performed in group sessions. Objectives: The study’s main objective was the implementation and evaluation of the effectiveness of a relaxation training intervention for children with ASD, delivered by the social robot NAO. Methods: 20 children (aged 7–12 years) were randomly assigned to 16 sessions of relaxation training implemented twice a week. Two groups were formed: the NAO group (children participated in individual sessions with the support of NAO) and the control group (children participated in individual sessions with the support of the therapist only). Participants received three different relaxation scenarios of increasing difficulty (a breathing scenario, a progressive muscle relaxation scenario and a body scan medication scenario), as well as related homework sheets for practicing. Pre- and post-intervention assessments were conducted using the Child Behavior Checklist (CBCL) and the Strengths and Difficulties Questionnaire for parents (SDQ-P). Participants were also asked to complete an open-ended questionnaire to evaluate the effectiveness of the training. Parents’ satisfaction was evaluated via a questionnaire and children satisfaction was assessed by a thermometer scale. Results: The study supports the use of relaxation training with the NAO robot as instructor for children with ASD. Parents of enrolled children reported high levels of satisfaction and provided positive ratings of the training acceptability. Children in the NAO group presented greater motivation to complete homework and adopt the learned techniques at home. Conclusions: Relaxation training could be effectively integrated in robot-assisted protocols to help children with ASD regulate emotions and develop self-control.

Keywords: Autism spectrum disorders, CBT, children relaxation training, robot-assisted therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
1098 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: Climbing robot, dipole antenna, Ground Penetrating Radar (GPR), mobile robots, robotic GPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1097 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis

Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi

Abstract:

In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.

Keywords: PERT, CPM, MCDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1096 Making Computer Learn Color

Authors: Rinaldo Christian Tanumara, Ming Xie

Abstract:

Color categorization is shared among members in a society. This allows communication of color, especially when using natural language such as English. Hence sociable robot, to live coexist with human in human society, must also have the shared color categorization. To achieve this, many works have been done relying on modeling of human color perception and mathematical complexities. In contrast, in this work, the computer as brain of the robot learns color categorization through interaction with humans without much mathematical complexities.

Keywords: Color categorization, color learning, machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1095 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation

Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana

Abstract:

In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.

Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4388
1094 A Study on Brushless DC Motor for High Torque Density

Authors: Jung-Moo Seo, Jung-Hwan Kim, Se-Hyun Rhyu, Jun-Hyuk Choi, In-Soung Jung,

Abstract:

Brushless DC motor with high torque density and slim topology for easy loading for robot system is proposed and manufactured. Electromagnetic design is executed by equivalent magnetic circuit model and numerical analysis. Manufactured motor is tested and verified characteristics comparing with conventional BLDC motor.

Keywords: Brushless DC motor, Robot joint module, Torque density, Pole/slot ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6864
1093 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
1092 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1091 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: Control, limits cycle, robot, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
1090 Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand

Authors: Mogeeb A. El-Sheikh

Abstract:

The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method.

Keywords: Adaptable socket, prosthetic hand, transradial amputee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
1089 Development of UiTM Robotic Prosthetic Hand

Authors: M. Amlie A. Kasim, Ahsana Aqilah, Ahmed Jaffar, Cheng Yee Low, Roseleena Jaafar, M. Saiful Bahari, Armansyah

Abstract:

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Keywords: Prosthetic hand, Biomimetic actuation, Shape Memory Alloy, Tactile sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
1088 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: Drilling, PDE control, robotic arm, resonant vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107