Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Central Pattern Generator Incorporating the Actuator Dynamics for a Hexapod Robot
Authors: Valeri A. Makarov, Ezequiel Del Rio, Manuel G. Bedia, Manuel G. Velarde, Werner Ebeling
Abstract:
We proposed the use of a Toda-Rayleigh ring as a central pattern generator (CPG) for controlling hexapodal robots. We show that the ring composed of six Toda-Rayleigh units coupled to the limb actuators reproduces the most common hexapodal gaits. We provide an electrical circuit implementation of the CPG and test our theoretical results obtaining fixed gaits. Then we propose a method of incorporation of the actuator (motor) dynamics in the CPG. With this approach we close the loop CPG – environment – CPG, thus obtaining a decentralized model for the leg control that does not require higher level intervention to the CPG during locomotion in a nonhomogeneous environments. The gaits generated by the novel CPG are not fixed, but adapt to the current robot bahvior.Keywords: Central pattern generator, electrical circuit, hexapod robot
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075757
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811References:
[1] E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science. Kandel and Schwartz Ed., Elsevier 1991.
[2] C. A. Wiersma (ed.) Invertebrate nervous systems. Univ. Chicago Press 1968.
[3] H. Cruse, "What mechanisms coordinate leg movement in working arthropods?", Trends in NeuroScience, vol. 13, pp. 15-21, 1990.
[4] M. Golubitsky, I. Stewart, P.-L Buono, and J. J. Collins, "Symmetry in locomotor central pattern generators and animal gaits", Nature, vol. 401, pp. 693-695, 1999.
[5] H. Cruse, T. Kindermann, M. Schumm, J. Dean, and J. Schmitz, "Walknet - a biologically inspired network to control six-legged walking", Neural Networks, vol. 11, pp. 1435, 1998.
[6] P. Arena, L. Fortuna, and M. Branciforte, "Reaction-diffusion CNN Algorithms to Generate Artificial Locomotion", IEEE Trans. Circuits Systems I, vol. 46, pp. 253, 1999.
[7] W. Y. Yiang, G. Schooner, and J.A.S. Kelso, "A synergetic theory of quadrupedal gaits and gait transition", J. Theor. Biol. vol. 142, pp. 359- 391, 1990.
[8] J. J. Collins and I. Stewart, "Coupled nonlinear oscillators and the symmetries of animal gaits" Nonlinear Science, vol. 3, pp. 349-392, 1993.
[9] J. J. Collins and I. Stewart, "Hexapodal gaits and coupled nonlinear oscillator models". Biological Cybernetics vol. 68, pp. 287-298, 1993.
[10] J. J. Collins and I. Stewart, "A group-theoretic approach to rings of coupled biological oscillators", Biological Cybernetics vol. 71, pp. 95- 103, 1994.
[11] M. Golubitsky, I. Stewart, P. L. Buono, and J. J. Collins, "A modular network for legged locomotion", Physica D vol. 115, pp. 56-72, 1998.
[12] J. W. Rayleigh, The Theory of Sound 2nd ed., Dover N.Y., 1945.
[13] M. Toda, Theory of Nonlinear Lattices, Springer Berlin, 1981.
[14] M. Toda, Nonlinear Waves and Solitons, Kluwer Dordrecht, 1983.
[15] V. A. Makarov, W. Ebeling, and M. G. Velarde, "Soliton-like waves on dissipative Toda lattices", Int. J. Bifurcation and Chaos vol. 10, pp. 1075-1089, 2000.
[16] V. A. Makarov, E. Del Rio, W. Ebeling, and M. G. Velarde, "Dissipative Toda-Rayleigh lattice and its oscillatory modes", Physical Review E vol. 64, pp. 036601-36615, 2001.
[17] E. Del Rio, V. A. Makarov, M. G. Velarde, and W. Ebeling, "Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring", Physical Review E vol. 67, pp. 056208-056217, 2003.
[18] S. Still, K. Hepp, and R. J. Douglas, "Neuromorphic walking gait control", IEEE Trans. Neural Netw. vol 17, pp. 496-508, 2006.
[19] V. A. Makarov, M. G. Velarde, A. Chetverikov, and W. Ebeling, "Anharmonicity and its significance to non-Ohmic electric conduction", Physical Review E, vol. 73, pp. 066626-066612, 2006.
[20] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer- Verlag, Berlin, 1995.
[21] A. C. Singer and A. V. Oppenheim, "Circuit implementation of soliton systems", Int. J. Bifurcation Chaos vol. 9, pp. 571, 1999.
[22] N. Islam, J. P. Singh, and K. Steiglitz, "Soliton phase shifts in a dissipative lattice", J. Appl. Phys. vol. 62, pp. 689-693, 1987.