
Robot Motion Planning in Dynamic Environments 
with Moving Obstacles and Target 

 

Ellips Masehian, and Yalda Katebi 
 

 
Abstract—This paper presents a new sensor-based online method 

for generating collision-free near-optimal paths for mobile robots 
pursuing a moving target amidst dynamic and static obstacles. At 
each iteration, first the set of all collision-free directions are 
calculated using velocity vectors of the robot relative to each obstacle 
and target, forming the Directive Circle (DC), which is a novel 
concept. Then, a direction close to the shortest path to the target is 
selected from feasible directions in DC. The DC prevents the robot 
from being trapped in deadlocks or local minima. It is assumed that 
the target’s velocity is known, while the speeds of dynamic obstacles, 
as well as the locations of static obstacles, are to be calculated online. 
Extensive simulations and experimental results demonstrated the 
efficiency of the proposed method and its success in coping with 
complex environments and obstacles. 

 
Keywords—Dynamic Environment, Moving Target, Robot 

Motion Planning. 
 

I. INTRODUCTION 

ANY efforts have been conducted in robotics research 
for solving the fundamental problem of motion 

planning, which consists of generating a collision-free path 
between start and goal positions for a robot in a static and 
completely known environment, where there could be 
obstacles [1]. Mobile robot motion planning in dynamic 
environments has been studied extensively in [2]. On-line 
planning algorithms are needed for changing environments, 
but these typically suffer from a lack of generality in the 
knowledge of the space in which they are executed. Lots of 
studies exist on the motion planning for robotic systems using 
various approaches. There is strong evidence that a complete 
planner (i.e. one that finds a path whenever one exists and 
reports that no one exists otherwise) will take time exponential 
in the number of degrees of freedom (dof) of the robot, and 
that the algorithm belongs to a class of problem known as NP-
Complete [3].  
 In recent years, a class of motion planning problems that has 
received more attention is the motion planning in dynamic 
environments with moving obstacles and moving targets. It 
was shown that dynamic motion planning for a point in the 
plane, with bounded velocity and arbitrary many obstacles, is 
intractable and NP-Hard [4].  
 A number of works exist on motion planning in dynamic 
environments with moving obstacles. These studies, in terms  
 
 

Authors are with Faculty of Engineering, Tarbiat Modares University, 
Tehran, Iran. 

of the knowledge of the movement of obstacles, can be 
classified into two categories: 

In the first category, movements of obstacles are completely 
unknown to the robot [5]. Our study belongs to this category. 
However, despite the lack of robot’s knowledge of the 
environment, we try to optimize the robot’s motion. Also, the 
safety of robot motion is an important concern. 
 In the second category, movements of obstacles are 
completely known. In recent studies some methods are 
presented for optimal motion planning where a start to goal 
trajectory is computed at discrete time intervals by searching a 
tree of feasible avoidance maneuvers [6].  
 In addition to these categories, some works introduce the 
factor of uncertainty in obstacles’ motion. In this realm a 
method was proposed in [7] to predict the motion of an 
obstacle and its uncertainty from the history of its movement. 
In another work, a probabilistic model of the uncertainty is 
used in order to select the motion that minimizes the expected 
time of reaching the destination [8]. 
 An efficient neural network method was presented in [9] for 
real-time motion planning of a mobile robot, or a multi-joint 
robot manipulator, with safety considerations in a 
nonstationary environment. The optimal robot motion was 
planned through the dynamic neural activity landscape of the 
biologically-inspired neural network without any prior 
knowledge of the dynamic environment and without any 
learning procedures. A data-driven fuzzy approach was 
developed for solving the motion planning of a mobile robot in 
the presence of moving obstacle. The approach consists of 
devising a general method for the derivation of input-output 
data to construct a Fuzzy Logic Controller (FLC) off-line [10]. 
 Some papers have developed motion planning with moving 
target. In [11] the authors consider the problem of planning the 
motions of a mobile robot equipped with a visual sensor, 
whose task is to track an unpredictable moving target in a 
workspace cluttered by obstacles. The planner decides in real 
time how the robot should move in order to keep the target 
within its field of view. It also proposed a framework by 
combining game theory and geometry to solve this multifold 
planning problem. 
 Several applications require persistent monitoring of a 
moving target by a controllable vision system. In applications 
that involve automated processes that need to be monitored, 
such as in an assembly workcell, parts or subassemblies might 
need to be verified for accuracy, or are determined to be in 
correct configuration. Visual monitoring tasks are also suitable 
for mobile robot applications. The problem of computing robot 
motion strategies that maintain visibility of a moving target 
has introduced in a cluttered workspace [12]. In this work, the 

M 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007 

1249International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

13
.p

df



robot and its target exist in a bounded, Euclidean workspace 
cluttered with static obstacles. A novel rendezvous-guidance 
method is proposed for autonomous robotic interception of 
moving targets in a dynamic environment with static and/or 
moving obstacles [13]. 
 In this paper, both the moving obstacles and moving target 
problem are addressed. It is assumed that the target’s velocity 
is known while the speeds of dynamic obstacles, as well as the 
locations of static obstacles, are to be calculated online. The 
next section denotes the assumptions of the model. After 
describing the robot’s sensing mechanism, and its technique 
for tracking the obstacles and the target, a new concept, the 
Directive Circle, is introduced. Next, the obstacle avoidance 
strategies are discussed. Finally, some simulation results are 
provided. 

II. PROBLEM ASSUMPTIONS 

In this section the assumptions on which the model is 
constructed is briefly reviewed. Three items are important to 
the model: the robot, obstacles (including the border), and the 
target. 
- Robot: The robot is circular and omnidirectional. It can move 

with a maximum speed of RV
G

, which should be known at 
the beginning of planning. It is equipped with range sensors 
encircled around it. 

- Obstacles: Each obstacle is presented with OBi. Obstacles 
may be static or dynamic, with the speed of OiV

G
. Their speed 

must be set at the beginning, and be proportional to the 
robot's velocity. Obstacles can be of any concave or convex 
polygonal shape, and their instantaneous speed vector 
(velocity and direction) is unknown to the robot. We assume 
that the obstacles are identifiable by the robot, and move 
along arbitrary trajectories within a predefined rectangular 
border, without rotating about an internal axis. The border is 
considered a rigid body with reflective property in an 
Euclidean workspace. Upon colliding with the border or 
another obstacle, it bounces (reflects) back along its direction 
before the collision. 

- Target: It is assumed that only one target exists in the 
problem, within the defined border. The velocity of target is 
shown with TV

G
, and is proportional to the robot's velocity. 

TV
G

 is known to the robot both at the beginning of motion 
planning, and later, if it undergoes a change. 

III. ROBOT'S SENSING 

 Since the velocity and position of obstacles is unknown for 
the robot, it must be equipped with detectors or range sensors 
to acquire necessary information. This is done by performing a 
visibility scan and detecting visible obstacle vertices. 
 Upon arriving at a new point in Configuration space, the 
robot first determines its distance to surrounding obstacles by 
means of its radial sensor readings, and stores the result in a 
visibility matrix which contains the angles of emanated sensor 
rays, the magnitude of each ray, and the coordinates of visible 
obstacle points. This matrix is then further processed to yield 
visible obstacles’ convex vertices, which are included in a list 
of candidate moves. 

 Assume that the mobile robot is located at the point c and 
has a circular shape with a radius of R and a number of S 
range-sensors situated equidistantly on its perimeter. Then 
each sensor projects a ray ri (i = 1, …, S, mod S, 
counterclockwise) to find out its distance ρi from the nearest 
visible obstacle point xi along the i-th direction, as shown in 
Fig. 1(a). Taking the metric D(xi, xc) for the Euclidean 
distance of points xi and xc, we have  ρi =D(xc, xi) – R, where 
xc is the coordinates of robot’s current position in the 
Configuration space. 
 In order for the robot to avoid getting trapped in obstacles’ 
concave regions and bypass any blocking obstacle, it should 
move toward the tangent rays of obstacles boundaries. A ray ri 
is tangent to an obstacle iff in a neighborhood U of xi the 
interior of the obstacle lies entirely on a single side of the line 
ri. Otherwise, the robot’s motion toward the middle of the 
obstacle will lead to collision. This strategy stipulates the robot 
to distinguish the obstacle’s outermost vertices, or in a broader 
sense (if the obstacles are not polygons), the regions adjacent 
to tangent rays, as viewed from the robot’s vantage point. 
 For determining the tangent rays, a difference function is 
applied for successive adjacent rays to calculate the ray 
difference variables as 

1ρ̂ ρ ρi i i+= − .          (1) 
 The magnitude-versus-angle plot of difference variables of 
the Fig. 1(a) is provided in Fig. 1(b). High peaks (both positive 
and negative) imply abrupt and large differences in successive 
ray magnitudes and so indicate the points where sweeping rays 
leave or meet a convex contour on obstacle boundary, and are 
detected by applying a notch filter to the plot. The result is 
determining obstacles’ positions. 
 

  
      (a)            (b) 
Fig. 1 (a) A visibility scan of the environment by the robot located at 
c, and lines involved in calculating the cost of tangent rays. (b) The 

sensory data is processed to find obstacle vertices, represented by the 
two sharpest peaks 

 
 Now the velocities of obstacles should be detected. The 
robot records the positions of obstacles’ edges in two 
successive iterations (time intervals) to determine each 
obstacle’s speed. 
 Because of the dynamic nature of the problem, in which 
obstacles may mask each other or follow unknown directions, 
they are not necessarily identifiable by just their vertices. 
Therefore, a theoretical landmark is necessary to precisely 
track the obstacles. Since two visible edges of an obstacle will 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007 

1250International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

13
.p

df



definitely intersect, their intersection point can be computed as 
a landmark point. This point will help the robot in determining 
the obstacle’s speed vector. 
 As shown in Fig. 2, suppose that e1 and e2 are the edges of 
obstacle Oi. The robot senses P1 and P2 on edge e1, and P3 and 
P4 on edge e2 at time t1. At the next time interval (t2) the points 
P′1 and P′2 are sensed on edge e′1, and points P′3 and P′4 on 
edge e′2. The slope of each edge can then be calculated based 
on these points. 
 

 
Fig. 2 Finding the velocity of obstacles 

 
 The algorithm looks for two equal slopes among visible 
edges at time interval [t1, t2]. In this case, S and S′ are the 
landmark points. These points can be a real vertex of the 
obstacle, or a virtual one. The velocity vectors OxV

G
and OyV

G
 of 

the obstacle then would be:   

O

O

x S S

y S S

V x x

V y y
′

′

= −

= −

G

G          (2) 

 When only one edge of the obstacle is visible at time t1, and 
a landmark point cannot be found through the above 
procedure, the algorithm searches for an edge parallel to the 
visible edge at time t2 and takes the endpoint of the edge as an 
approximate landmark for calculating OxV

G
 and OyV

G
. As a 

result, the obstacle’s velocity will be estimated roughly, and as 
soon as two edges of the obstacle become visible, the velocity 
will be calculated exactly via an exact landmark. 
 

IV. TARGET FOLLOWING 

 In this section, we present the method of following the 
moving target. In [13] a novel method for the interception of 
moving targets in the presence of obstacles is proposed. The 
authors define a line-of-sight (LOS) as the relative position 
vector, rG , connecting the robot to the target, as shown in Fig. 
3. The Parallel Navigation law states that the direction of LOS 
should remain constant relative to a non-rotating frame, while 
the robot approaches the target. Namely, the relative velocity, 
r� , between the robot and the target should remain parallel to 
the LOS (i.e. rG ) at all times. If this rule holds throughout the 
motion of the interceptor, the distance between the robot and 
the target would decrease until they collide. Furthermore, if the 
target moves with a constant velocity, parallel navigation 

results in global time-optimal interception. The parallel 
navigation law is expressed by the following two relationships: 

0,r r× =
G �            (3) 

0.r r⋅ <
G �              (4) 

 Equation (3) guarantees that the LOS and relative velocity 
remain parallel, while equation (4) ensures that the interceptor 
is not receding from the target. 
 The robot can move with a maximum speed of RV

G
. 

However, because of the presence of obstacles, it is not always 
possible to directly follow the optimum path to the target. 
 

 
Fig. 3 Finding the optimum path toward the target 

 
 As long as the robot follows the optimum path, the optimum 
path is not required to be recalculated. However, upon 
deviating from the optimum path, the robot must perform new 
calculations to find the path to the target. 

In Fig. 3 suppose that target T moves along TV
G

. The origin 
of the frame of coordinates is located on the robot’s center to 
show the instantaneous relative position of target. The velocity 
of target and any changes in direction of target’s trajectory, 
and hence vectors rG  and TV

G
 are known for robot. The 

endpoints of the velocity vectors present the position of the 
target and robot, after one time-interval has elapsed. The 
Guidance Line (GL) in Fig. 3 is a semi-line that is parallel to 
LOS. If the end-point of RV

G
 falls on this semi-line, the 

direction of LOS would remain constant, and positional 
matching between the robot and the moving target is 
guaranteed.  

The goal of the trajectory planner is to obtain a robot-
velocity command for the next command instant, according to 
the parallel navigation law. First a circle with radius || RV

G
|| is 

drawn around the robot. This circle intersects the semi-line GL 
at P. This is the end point of RV

G
. It is evident that RV

G
  must 

be at least equal to target’s velocity in order to reach target. 
Through this method we can find the optimal path. 

However, we consider the path’s safety, which is also an 
important issue. 

 
 
 

TV
G

TV
G

rG

x

y

RV
G Optimum 

path 

T

Robot 

GL

P

LOS
iO1P

2P

3P
4P

1e

2eS

iO1P′

2P′
3P′

4P′

1e′

2e′S ′

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007 

1251International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

13
.p

df



V. OBSTACLE AVOIDANCE  

In this section, we present the concept of the Directive 
Circle (DC) for single and multiple obstacles. This circle 
decides the acceptable and forbidden directions to move. At 
any instant, the robot recognizes the velocities of obstacles 
using the method explained in Section III.  

The example in Fig. 4 illustrates the creation of the 
Directive Circle. Consider the robot R and obstacle OB, which 
is concave. The velocity of the obstacle is OV

G
. We define the 

Collision Cone, CCR,OB, as the set of relative velocities 
between the colliding R and OB [6]: 

 

{ }, , ,λ OB φR OB R OB R OBCC v= ≠∩  

 
 

 
Fig. 4 The relative velocity VR,OB and the collision cone CCR,OB   

 
 
where ,R OBV

G
 = RV

G
 – OV

G
 is the relative velocity of R with 

respect to OB, and λR,OB is the direction of ,R OBV
G

. λr and λl 
represent the two rays tangent to the obstacle, and are 
determined in visibility scan described in Section III. For 
every particular robot/obstacle pair, there is a unique Collision 
Cone. 

In DC, we find the forbidden directions as sets of 
directions in λR,OB lied on CCR,OB. For forming the DC, the 
position of the robot along OV−

G
 must be shifted. Then we 

draw a circle C around the robot with a radius of maximum 
velocity of robot. 

Geometrically, one case from four cases may occur: 1) the 
circle intersects λr, 2) the circle intersects λl, 3) the circle 
intersects both λr and λl, and, 4) the circle intersects none of 
them. As shown in Fig. 5. In this sample, circle C has 
intersection with λl at point A, and with λl at point B. So, if the 
slope of λR,OB falls between the slopes of PA and PB vectors, 
the robot will collide with the obstacle. The Directive Circle 
(dashed) is formed using the above calculation. 
 If the circle C doesn't have any intersection points with 
tangents λr and λl, DC does not have any forbidden zone, and 
robot can freely move along the calculated optimal direction to 
the target. If the whole circle C falls in CCR,OB, then all 
possible directions are forbidden and the robot should stop. 

This condition usually happens when the robot is in a cluttered 
space, and/or obstacles have surrounded the robot tightly.  
 The DC must be built for all moving or static obstacles. Let 
Fi show the forbidden areas for each obstacle i. Then the total 
DC for all obstacles (i.e. the total forbidden and collision-free 
paths) is computed by superimposition of all partial DCs as 
below: 

1
m
i iF F== ∪ .          (5) 

 

 

Fig. 5 Finding the forbidden zone and Directive Circle (DC) 
 

A.  Optimal Solution Search 
 By following the above algorithm, a set of collision-free 
paths are found for the center of robot. Our purpose is to find 
the best collision-free path. In Section IV the method of find-
ing an optimum path toward target was discussed. Consider 
the DC of the problem shown in Fig. 6. By dividing the DC 
into N parts, there are N directions (ri) to select. Some of these 
paths are located in forbidden areas and cannot be selected.   
 
Acceptable directions are selected based on these conditions: 

C1) The optimum path falls in acceptable area. 
C2) The optimum path falls in forbidden area.  

 If condition 1 occurs, the algorithm chooses the optimum 
path calculated with the method in Section IV. But if condition 
2 happens, the slopes of angle of optimum path is determined 
and shown with θ*. Then, the slopes of all acceptable 
directions are measured and named θi. gi represents the gap 
between θ* and θi, as below: 

gi = | θi − θ∗|;   ∀ θi ∈ Θf  .       (6) 
In order to find the optimum direction, the probability of 

each direction is computed by  
2 / 21( )

2
ixP r ei π

−=  ,        (7) 

in which  xi = gi mod π , 0 ≤xi≤ π. So the direction with 
maximum probability is selected as below: 

V
G

= {ri | P(ri) ≥ P(rj) , ∀ i≠j }      (8) 
 In some conditions, there is an obstacle between robot and 
target, along the optimum path. In this situation, using 

lλ

rλ

OB 

R 
RV
G

OBR ,λ

,R OBCC

OV
G

OV−
G

lλ

rλ

OB 

R 

OBRCC ,

OV−
G

A

B

P

OV
G

C

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007 

1252International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

13
.p

df



described algorithm will be helpful. Simulation of problem in 
next section shows that regard to optimum direction and target 
path, robot chooses the best solution that is short and safe. This 
property will be shown in the next section.  
 

 
 

Fig. 6 Total Directive Circle for 3 disjoint obstacles 

B.  Safety Checking 
 The robot is circular with radius r. so we need to check the 
safety of the path in order to avoid collisions. We need to 
check the safety of the path when the robot is near to obstacles. 
It is possible to define a parameter for the safety level of the 
planning. An obstacle is said to be near to the robot when the 
minimum distance between the robot and obstacle is K times 
less than the obstacle’s velocity. K is the safety parameter. 

 
Fig. 7 Total Directive Circle for 3 disjoint obstacles 

 
 Aiming to verify the safety of the path, the robot’s exterior 
points should be checked to make sure whether the robot 
contacts with obstacles or not. In Fig. 7, the exterior points are 
shown with A and B. Since the robot’s shape is circular, these 
points can be determined easily. A is resulted from subtracting 
90º from the gradient of chosen path, and B is obtained from 
adding 90º to the gradient of the chosen path. In order to 
ensure that these points get in touch with obstacle or not, the 
algorithm presented in Section V can be used (from [6]). As 
shown in Fig. 7, d1 and d2 are the sums of the robot’s velocity 
vector and –VO at A and B respectively. d1 falls out of CCR,OB

  

in point A and so does not contact with the obstacle. However, 
d2 falls in the CCR,OB of point B, so this direction is not 
acceptable for moving. This procedure ensures that the chosen 
direction is collision-free.  

VI. SIMULATION AND DISCUSSION  

 This section presents simulations of the algorithm’s 
performance. To substantiate the motion planner’s capabilities, 
two types of problems are simulated: Example 1 shows the 
effectiveness of the Directive Circle (DC) and the method’s 
optimality. Two cases are simulated and presented in Figs. 
8(a), (b), (c), and Figs. 8(d), (e), (f). In both cases, initial 
configurations of the start and goal are the same. Also, the 
obstacle’s position and velocity is the same in both cases. 
Therefore, the DC of both cases are equal, while the optimum 
paths are different and lying in forbidden areas. In Figs. 8(a), 
(b), (c) the target moves upward, and directions within [58°, 
305°] are acceptable. The slope of the optimum direction is 
16°. Directions are prioritized using (7), and the most probable 
direction is selected and checked for the safety of path. In Fig. 
8(a) initial locations of the robot, target and obstacle are 
displayed. Up to the state shown in Fig. 8(b), condition C2 (in 
Section V.A) holds. Afterwards, condition C1 occurs and the 
optimum path falls in the acceptable area of DC. 
 Figs. 8(d), 8(e), and 8(f) show the second case in which the 
slope of target’s movement is 255° and the slope of the 
optimum direction is 342°. Similar to the case 1, directions 
within [58°, 305°] are acceptable. Using equation (7), 
probabilities of selecting each direction are computed and the 
most likely direction is selected as the robot’s moving 
direction, as in Fig. 8(d). The robot follows that strategy until 
the target is visible and the optimum path in the DC falls in the 
acceptable area. The robot’s motion path, from start toward 
reaching the target, is shown in Fig. 8(e) and 8(f). 
 

   
(a)           (d) 

   
(b)           (e) 

A
R 

OV
G

B

OV−
G

OV−
G

d1 

d2 

Optimum path 
to the target 

Target’s real 
path 

ri 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007 

1253International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

13
.p

df



   
 (c)           (f) 

Fig. 8 The Directive Circle helps the robot in selecting the right 
direction in problem 1 (a, b, c), and problem 2 (d, e, f) 

 
 The presented planner can solve more complex problems 
with more static or dynamic obstacles in convex or concave 
forms. Fig. 9(a) demonstrates an example that the motion 
planning is to be done in the presence of one static and two 
dynamic obstacles. At starting moment the robot is close to a 
concave obstacle. By applying the obstacle avoidance 
technique, the robot moves away from the concave obstacle 
and toward the target. At the moment shown in Fig. 9(b), the 
moving convex obstacle collides with the boarder and bounces 
back. The robot senses this change in real-time, and realizes 
that following the previous direction would not be optimal. So, 
it changes its direction to the left. Fig. 9(c) displays the 
instance at which the concave obstacle bumped to the border. 
The overall trajectory of the robot is shown in Fig. 9(d). 
 These simulations demonstrate the efficiency of the method 
and its responsive performance. As shown in figures, the 
robot’s trajectory is collision-free, safe, and near optimal. It 
can be implemented in any arbitrary environment.  
 

   
(a)           (b) 

   
(c)           (d) 

Fig. 9 The robot has real-time responses to unpredicted variations in 
environment 

VII.  CONCLUSION  
 A new method for planning the motions of a mobile robot in 
dynamic environments with moving and/or static obstacles and 
moving target is presented. By setting the target’s velocity to 
zero, the problem turns into a classic moving obstacles 
problem and can be solved successfully by this planner. The 
motion planner’s decisions are based on the robot’s current 
position, and the velocities of the target and obstacles. 
Obstacles are not limited in shape, and can be concave or 
convex. 
 The main focus has been on two aspects: (a) time-optimal 
interception with a moving target; (b) obstacle avoidance. Key 
features of this approach are: (1) it finds a safe path; (2) it 
incorporates simple geometric estimations on possible 
deadlocks and local minima; (3) it is practical in a real-time 
environment with various obstacles. Another property of this 
method is the smoothness of the resulting trajectory. 
 This method can be extended to multi-robot applications. 
For future work, an interesting extension to the algorithm can 
be the problem of pursuing a set of moving targets by a set of 
robots; such each robot selects the nearest target.   
 Numerous simulations have verified the system to be 
efficient and robust in regards to interception of moving 
targets with various different interception parameters and 
situations. In order to estimate exact velocities of moving 
objects and find the optimum path, the robot’s sensors must be 
sufficient in number and coverage. 

REFERENCES   
[1] J. C. Latombe, Robot Motion Planning, Kluwer Academic Pub., Boston, 

MA, 1991. 
[2] T. Tsubouchi and M. Rude, “Motion planning for mobile robots in a 

time-varying environment”, J. of Robotics and Mechatronics, Vol. 8, No. 
1, pp. 15-24, 1996. 

[3] J. Canny, The Complexity of Robot Motion Planning, MIT Press, 
Cambridge, MA, 1988. 

[4] J. Canny and J. Reif, “New lower bound techniques for robot motion 
planning”, in Proc. IEEE Symposium on the Foundations of Computer 
Science, Los Angeles, CA, 1987. 

[5] S. Ishikawa, “A method of indoor mobile robot navigation by using 
fuzzy control”, in Proc. IEEE/RSJ Int. Workshop on Intelligent Robots 
and Systems, pp. 1013-1018, 1991. 

[6] P. Fiorini and Z. Shiller, “Motion planning in dynamic environment 
using velocity obstacles”, International Journal of Robotics Research, 
Vol. 17, No. 7, pp. 760-772, July 1998. 

[7] A. Inoue, K. Inoue, and Y. Okawa, “On-line motion planning of 
autonomous mobile robots to avoid multiple moving obstacles based on 
prediction of their future trajectories”, J. of Robotics Society of Japan, 
Vol. 15, No. 2, pp. 249-260, 1997. 

[8] J. Minura, H. Uozumi, and Y. Shirai, “Mobile robot motion planning  
considering the motion uncertainty of moving obstacles”, in Proc. IEEE 
Int. Conf. on Systems, Man, and Cybernetics, Tokyo, pp. 692-698, 1999. 

[9] S. X. Yang and M. Meng, “An efficient neural network method for real-
time motion planning with safety consideration”, J. of Robotics and 
Autonomous Systems, Vol. 32, pp. 115-128, 2000. 

[10] M. Al-Khatib and J. J. Saade, “An efficient data-driven fuzzy approach 
to the motion planning problem of a mobile robot”, J. of Fuzzy Sets and 
Systems, Vol. 134, pp. 65-82, 2003. 

[11] P. Fabiani, H. H. Gonzalez-Banos, J. C. Latombe and D. Lin, “Tracking 
an unpredictable target among occluding obstacles under localization 
uncertainties”, J. of Robotics and Auton. Sys., Vol. 38, pp. 31-48, 2002. 

[12] S. M. Lavalle, H. H. Gonzalez-Banos, C. Becker, and J. C. Latombe, 
“Motion Strategies for Maintaining Visibility of a Moving Target”, in 
Proc. IEEE Int'l Conf. on Robotics and Automation, pp. 731-736, 1997. 

[13] F. Kunwar, F. Wong, R. Ben Mrad, B. Benhabib, “Guidance-based on-
line robot motion planning for the interception of mobile targets in 
dynamic environments”, J. of Intelligent and Robotic Systems, Vol. 47, 
Issue 4, pp. 341-360, 2006. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007 

1254International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

13
.p

df




