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Abstract—One of the main difficulties in developing multi-robot
systems (MRS) is related to the simulation and testing tools available.
Indeed, if the differences between simulations and real robots are
too significant, the transition from the simulation to the robot
won’t be possible without another long development phase and
won’t permit to validate the simulation. Moreover, the testing of
different algorithmic solutions or modifications of robots requires
a strong knowledge of current tools and a significant development
time. Therefore, the availability of tools for MRS, mainly with
flying drones, is crucial to enable the industrial emergence of these
systems. This research aims to present the most commonly used
tools for MRS simulations and their main shortcomings and presents
complementary tools to improve the productivity of designers in the
development of multi-vehicle solutions focused on a fast learning
curve and rapid transition from simulations to real usage. The
proposed contributions are based on existing open source tools as
Gazebo simulator combined with ROS (Robot Operating System) and
the open-source multi-platform autopilot ArduPilot to bring them to
a broad audience.
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I. INTRODUCTION

MULTI-ROBOT systems (MRS) are systems composed

of several mobile robots. Thanks to their intrinsic

robustness and modularity, they can perform complex tasks

more efficiently than robots alone [1]. If MRS are studied

intensively today [2], [3], there are still very few industrial

uses. Indeed, the MRS are complex to analytically model.

Secondly the design of hardware and software parts are also

tricky [4]. The process of developing, testing and debugging

a group of robots is a difficult and time-consuming task given

the number and complexity of the entities used. This paper

presents a set of new simulation and testing tools for MRS

to reduce the complexity of their development. Section II

provides an analysis of the main tools used in MRS research.

Then Section III presents the autopilot for robots and why they

should be used. Finally, Section IV provides details of a new

simulation tool.

This works targets small mobile robots, which are robotic

entities capable of moving in their environment. This definition

includes mobile robots (Unmanned Ground Vehicles or

UGVs), flying robots (Unmanned Aerial Vehicles or UAVs),

boats, etc., but excludes robotics arms.

P. Kancir is with the Lab-Sticc, Université de Bretagne Sud, UMR CNRS
6285, Lorient, France (e-mail: pierre.kancir@univ-ubs.fr).

J-Ph. Diguet and M. Sevaux are with the Lab-Sticc, Université de Bretagne
Sud, UMR CNRS 6285, Lorient, France.

II. SIMULATION TOOLS

A. Simulators

The perfect simulator does not yet exist, but there are

some that are able to approach current robotic reality in order

to demonstrate and compare different solutions to a robotic

problem. Among the most famous are the following:

• The Player/Stage suite [5]: It’s a 2D open source robotic

simulator. It natively supports multi-robot systems with a

small sensor database. The suite is also compliant with

the ROS (Robot Operating System) [6] middleware to

extend its simulation capabilities. However, the models

used are aging (no drone, no wireless networks, etc.) and

the project is only little maintained to keep compability

with ROS.

• Gazebo [7]: It is an open source 3D simulator, only

available under Linux. It is the reference for 3D open

source robotic simulators.

– Ability to accurately simulate complex robots such

as Atlas or Valkyrie or drones such as the 3DR Iris.

– Gazebo is flexible. It is possible to simulate a

complex robot like a cloud of drones by simply

reconfiguring it. In addition, there are a multitude of

plug-ins that increase the already present possibilities

(sensor, physical model, etc.).

– Integration with ROS. Robots can be simulated with

the real code that will be running in their embedded

systems.

– Simulations performed on Gazebo with ROS can be

replayed using logging.

– A strong community.

• V-Rep [8]: A simulator similar to Gazebo, but not free nor

open source. It is therefore a multiplatform 3D simulator.

The advantage of V-Rep over Gazebo is its professional

support and better learning curve. Nevertheless, the use

of V-Rep in combination with real robots can only be

done through the use of ROS.

• MORSE [9]: It is a simulator built on a set of Python

libraries that uses the Blender software engine to interface

a virtual 3D environment with external software. Open

source and cross-platform, it allows to simulate a large

number of sensors and robots. Its advantage is based on

its modularity and its implementation in python which

allows you to quickly get to grips with it. Nevertheless,

it is less used than Gazebo or V-Rep and lacks of real

examples other than the documentation that make its

learning curve hard.
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According to [10], the complexity of the mission and the

environment affect the design of multi-robot systems. Despite

the possibility of being able to use "simple" robots in MRS, the

increase of the equipment complexity and the computational

capabilities of modern robots, has opened the way to new

possibilities. However, it has also increased the cost of the

design and evaluation processes of these systems. The main

parameters of an MRS that the simulator must be able to

implement are the following:

• Manage a variable number of robots

• Get access to different types of robots: rolling, flying,

flying, etc.

• Represent several characteristics of robots: sizes, weights,

sensors, etc.

• Can be used with several levels of realism: perfect

position, with positioning disturbance, etc.

• Allow to vary the mission environment: one of the main

difficulty of using an MRS relies to its organization in

the environment, the simulator must be able to simulate

different environments with physical characteristics:

building, ground elevation, etc.

• Provide a solution for recording simulation data so that

they can be replayed.

• Must be freeware and participatory to maximize reuse

and share experiences on MRS.

While the simulators described above are capable of

meeting these characteristics, their use remains complex and

cumbersome to implement. Indeed, they have a long learning

time due to the lack of concrete examples, especially in the

field of multi-robot simulations and need high computational

power.

B. ROS

Being the reference for robot developments, ROS is also

the reference for MRS. While not all work in the field uses it,

most of the works proposing experiments are based on ROS.

The main reason is to take advantage of eco-system allowing

the reuse of the code used in simulation on real platforms and

the relative simplicity of robot design. However, ROS also has

many disadvantages that do not make it the perfect choice for

MRS.

Initially designed to run on Willow Garage’s PR2 robot,

ROS has spread to other robots and other applications whose

uses had not been planned. Despite its many advantages, ROS

also has some disadvantages compared to other middleware or

software:

• ROS has no real-time capabilities.

• There is no follow-up of detailed source updates (API

changes, protocol, etc.).

• Depending on the libraries installed, the storage space

required may be large.

• No deployment on very small platforms (AVR, STM32,

etc.)

• No consideration of network quality: QoS, packet loss,

etc.

• No standard for the multi-robot approach

• Little interaction with other eco-systems: IoT etc.

[11]-[13]

Fig. 1 ArduPilot platforms

Fig. 2 ArduPilot software diagram

If the modularity and popularity of ROS have made it a

reference in robotics, its overly open development also means

many problems for more advanced use than prototyping.

Indeed, the quality of the different tools offered by ROS

is not always the same. Some tools clearly lack testing

and verification that leads to operational and reliability

problems, which delays development times due to debugging.

In addition, many of the proposed contributions, lack quality

and optimization for use in real embedded systems (use

of experimental software libraries, little protection against

memory overruns or divisions by zero, etc.). Initially designed

for terrestrial robots, ROS also lacks an interface and standard

libraries for other types of robots, especially those who are

flying. Finally, it does not offer any library for security actions

during problems despite the presence of a self-diagnosis tool,
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Fig. 3 Multi drone simulation with SITL

Fig. 4 SITL configurations

a vital component for large numbers of MRS demonstrations.

Thus, ROS is an interesting solution for solo robots but lacks

generosity for the design of MRS where the quality of robotic

platforms is vital for the proper functioning of the group.

III. AUTOPILOT FOR ROBOTS

Works on autonomous vehicles are numerous today and

tests in real conditions have already begun all over the world.

Because of the use of these vehicles with people nearby, it

is important to multiply the actual tests in as many situations

as possible. While ROS has become a reference in the field

of robotics, there is still no generic robotics platform at

affordable prices (i.e. < 10000e). This is an important issue

since the new work on MRS will have to perform complex and

time-consuming platform development tasks at the expense of

work on more academic issues (trajectory generation, swarm

control, etc.). A solution to this problem comes from flying

drones. Indeed, the current versions have more and more

capabilities thanks to the autopilots that control them. The

use of flying drones requires a reliable and proven flight

controller (both hardware and software) capable of managing

the low-level functions of the drone and safety (engine and

sensor control, navigation, etc.), things that must be developed

and tested on ROS. The development of a complete autopilot

requires advanced knowledge of electronics and software in

addition to knowledge of the type of robot required (flying,

driving, etc.) and a long and costly development time. It is so

preferable to start from an existing solution such as ArduPilot

[14], PX4 [15], DJI [16], PaparazziUAV [17] for the most

famous ones. The platform proposed in this article was built

on the basis of ArduPilot because it is the only one capable

of being used on any type of vehicle: driving, flying, surface

vehicles, etc., something requiring strong development on ROS

or Gazebo. While this autopilot is well known in the field of

flying drones, its use in groups, with terrestrial robots or in

MRS simulation is much less well known. It has the advantage

of being low cost, open source and has a strong community

and industrial partners and simply interfaces with ROS.

Unlike ROS, ArduPilot is not a middleware for robotics

but an autopilot for micro autonomous vehicles. It therefore

supports the 3 main robot types: ground, flying, and surface

vehicles. The software architecture differs significantly from

that of ROS since it is based on the model of embedded

computing architectures that take into account limited resource

issues, real time constraints and reliability requirements. The

initial development of ArduPilot was done by amateurs and

has evolved into a worldwide autopilot recognized for its

reliability by both academic, industrial and government actors
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Fig. 5 Leader-Follower simulation with Gazebo and SITL

Fig. 6 Quadcopter doing precision landing on a rover in Gazebo with ArduPilot

while keeping a strong community of enthusiast and active

developpers. Finally, the ArduPilot autopilot platform can be

used with ROS thanks to numerous libraries, including Mavros

[18]. Indeed, ArduPilot is currently only capable to understand

the MAVLink protocol [19]. It is a light and open source

protocol, based on binarized data structures that can be used

by systems with low resources and communication links with

low bandwidth. It is also based on a publish-subcribe and

point-to-point mechanism. MAVLink is designed to be used

with low throughput data streams: drone position, altitude,

etc., transmitted in multicast. The objective is to transmit

the information to those who can receive it but without any

guarantee of receipt. Point to point being reserved instead

for communications requiring acquiescence and a guarantee

of delivery such as configurations, emergency orders, etc. On

the other side, ROS is only capable to use ROS protocol.

Therefore, we need some applications, like Mavros, to make

a translation between MAVLink and ROS. Finally, it allows

data encryption, message addressing and message re-routing

by address, allowing both data security and long-distance data

transmission, both of which can be important for MRS. With

many standard messages and industrial support, this protocol
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has established itself as a reference in autopilots for UAVs but

also at the level of UGV since the recent Turtlebot 3 based on

ROS uses it.

IV. NEW SIMULATION TOOLS

A. ArduPilot SITL

While the simulators described above are capable of

meeting these characteristics from Section II, their use remains

complex and cumbersome to implement. Indeed, they have

a long learning time due to the lack of concrete examples,

especially in the field of multi-robot simulations and need for

high computational power. This is why a simpler simulation is

generally used at the expense of realism. In order to overcome

this defect, a new simulation solution was implemented with

several levels of realism and simpler usage for simple tests

(swarm group movement, etc.). This new simulation is based

on the SITL (Software In The Loop) simulator of the ArduPilot

project. SITL is able to simulate the different supported

vehicles and a set of sensors. The simulation of the drones

is complete in the sense that the simulated code is the same

as the one that will be embedded in the real platforms.

SITL is based on simple vehicle models (weight,

dimensions, etc.) and simulated sensors. The architecture

is divided into 3 parts: the vehicle, the frontend and the

backend. The simulated vehicle part uses the complete

ArduPilot code and simulated sensor data corresponding to

those of the supported platforms: IMU, GPS, barometer, etc.

Thanks to the sensor data, the code performs the vehicle’s

stabilization, navigation, avoidance, etc., tasks and returns

the calculated actuator outputs (motors, LEDs, etc.) to the

frontend. The frontend part provides the autopilot with the

simulated data from the backend, and returns to the backend
the autopilot outputs that will be used to update the models

in the simulation. This part is responsible for managing the

simulation clock. The simulation clock is separated from

the clock of the hardware environment. This allows the

simulated time to be accelerated or stopped for debugging, for

example. The backend part defines the simulated environment

with the technical characteristics of the vehicles and sensors

(weight, dimension). Each vehicle has a set of characteristics

and several default vehicles corresponding to the most used

vehicles are proposed. At each simulated time step, the

frontend updates the backend which sends the sensor data

to the autopilot and receives the data from the actuators that

will update the simulation. The separation into frontend and

backend of the simulator is effective to allow the use of

different backends. While the default backend remains simple,

it allows you to quickly simulate robots with a simple set of

sensors but does not have a collision model other than with

the ground.

B. Contributions

1) SITL Improvements: In order to be able to offer both

simple and complex simulations, several improvements have

been added to SITL in order to turn it from a single to

a multiple-robot system simulator. The aim is to be able

to quickly and simply simulate groups of vehicles with a

light simulator learning curve but without falling into the

trap of graphs or point simulations in a matrix. But also to

allow advanced simulation levels or combined with reality.

An important SITL rewrite work has been undertaken to

allow easier addition of backend and sensor from the different

backend and a simulation launch interface to simply create

multiple instances of SITL with vehicles configured to run in

groups.

Fig. 3 presents a view from GCS (Ground Control Station)

that command a swarm of 10 quadcopters simulated in SITL.

Each drone is doing the planned tasks that were assigned by

the GCS as a real will do and is able to communicate with

other drones only by through the GCS, that act as the central

communication node in this simulation.

The use of other backend allows to increase the models

and simulation levels. Thus it is now possible to connect

SITL to Gazebo as a simulator in order to benefit from a

collision model and a more complete simulation environment

(obstacles, mechanical constraints, etc.). This backend is

presented in Section IV-B2.

The use of SITL allows simple but fast MRS simulations

with the simple addition of collective behaviour or

coordination mechanisms either directly from the autopilot

code, as in Figure 5 or from an external controller or

application like ROS. The basic simulation is simplified since

the vehicle models used are basic: simple sensor and actuator

models, no collision systems, no mechanical problems. But

they realistically simulate the movements and behaviour

of vehicles since the entire autopilot code is used. This

low-resource simulation (1-2% of a 2017 i5 processor for a

vehicle instance) allows rapid progress in validating collective

behaviors with a simple learning of how to use the platform

and associated security concepts such as battery management

or EKF (Extended Kalman Filter) positioning issues.

2) SITL 3D Plotting with Gazebo: In order to extend the

possibilities of using SITL, a simple "plotting" plugin has been

developed in Gazebo [20]. This plugin allows the designers to

load a 3D model of a vehicle and external sensors (Lidar,

sonar, camera, etc.) into Gazebo and move the model with

position and orientation data from SITL.

Thus Gazebo serves as a simulator for sensors and 3D

engines for robots whose simulated data comes from SITL.

This architecture is the same as that used in drones using

autopilots: the autopilot manages the low level parts and

another controller (usually a microcomputer) manages the

high level tasks with ROS (sensor requiring Lidar 360 type

treatments, path planning, etc.). For this purpose, ROS is used.

A Gazebo plugin could have been developed but it was more

useful and simpler to use ROS here. Indeed, thanks to the

close bounding between Gazebo and ROS, all the sensors

simulated in Gazebo have natively an interface with ROS and

thus with ArduPilot via Mavros. Thus it is possible to combine

the three software packages, to make fast simulations with

advanced sensor simulations and simple obstacle and collision

management at the cost of a loss of realism. Due to the use

of Gazebo, this simulation is heavier than the one provided

by SITL alone. However, it provides advanced collision and

sensor management without the management of advanced

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:13, No:4, 2019 

215International Scholarly and Scientific Research & Innovation 13(4) 2019 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

3,
 N

o:
4,

 2
01

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

10
26

6.
pd

f



kinematic and dynamic models usually used with Gazebo that

are difficult to implement. Looking at Gazebo model for the

pioneer2dx robot [21], we can see the complexity. In fact,

tasks like calculating all inertial matrix, and friction between

components are not simple to do. This type of simulation is

used to test localization or avoidance strategies that will later

be optimized to be embedded without the disadvantages of

overly complete simulation. Fig. 5 shows a visualization of

a leader-follower behavior performed directly in ArduPilot,

the framed drone is the leader who sends his current position

and velocity vector to the two followers who must maintain

a constant distance and a given position with the leader. This

simulation is simpler to do than the full Gazebo version. In

fact, there are few parameterization to be done on Gazebo side

to only visualize the vehicle position, whereas a full simulation

would include some tuning of the collision and lift-drag

system. The SITL configuration consists only on launching 3

instances of quadcopter on SITL. In the configuration part,

this type of simulation is faster than doing a full Gazebo

simulation, but it is also less consuming in term of computation

power as the model and physics involved in Gazebo are

simplified. A standard laptop with i5 processor is able to play

it with simulation time accelerated more than 5 times.

3) ArduPilot Plugin for Gazebo: Finally, a new Gazebo

plugin has been created [22]. This time, it allows Gazebo to

be used as a SITL backend in order to take advantage of a

collision model and a more complete simulation environment

(obstacles, mechanical constraints, etc.). That is to say, all

data provided to SITL comes from the models loaded into

Gazebo. This allows you to take advantage of Gazebo’s

advanced sensor models directly in the autopilot. It is no longer

necessary to use ROS as a gateway. Indeed, even if ArduPilot

is not as complete as ROS in terms of robotics algorithms (path

planning, sensor interface, etc.), it is sufficiently complete to

allow autonomous travel (navigation on the route by GPS

waypoints and simple obstacle avoidance). This new Gazebo

plugin does not include ArduPilot in this one but allows

a direct connection with SITL which works on all types

of vehicles and supports multi-robots configurations. This

work is the basis of the simulations carried out for the

Service Academies Swarm Challenge Live-Fly Competition

[23] where two groups of 40 UAVs (20 flying wings and 20

quadrotors) compete in a flag capture match. Fig. 6 shows

the simulation of a rover and quadcopter under ArduPilot

in Gazebo. Thanks to the camera data from Gazebo, the

quadcopter is able to track the rover and land accurately on it

during movement. The code for precision landing is available

in ArduPilot [24], Gazebo here allows to check its proper

functioning with the addition of wind and different speeds

of movement of the rover.

V. CONCLUSION

This article first provides a review of the main tools used

for MRS simulations with their use and drawbacks. It also

introduces new software solutions as well as new simulation

methods to simplify MRS developments, especially those that

are heterogeneous, i.e. with several different vehicle types.

These new tools have been made available to the scientific

community as open source and royalty-free software. We

maintain that this platform, which is compatible with ROS,

but which meets operating constraints closer to the solutions

expected by manufacturers, will provide a generic framework

for even more advanced MRS solutions [25]. In future work,

we would like to complete the integration of the Gazebo plugin

in the next versions of the simulator in order to make it

even easier for the entire ROS community to benefit from

its possibilities. On the ArduPilot autopilot side, new work

will make it possible to simulate even more sensors natively

in SITL and improve interoperability with ROS.
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