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Abstract—A Fourier series based learning control (FSBLC)
algorithm for tracking trajectories of mechanical systems with
unknown nonlinearities is presented. Two processes are introduced to
which the FSBLC with PD controller is applied. One is a simplified
service robot capable of climbing stairs due to special wheels and
the other is a propeller driven pendulum with nearly the same
requirements on control. Additionally to the investigation of learning
the feed forward for the desired trajectories some considerations on
the implementation of such an algorithm on low cost microcontroller
hardware are made. Simulations of the service robot as well as
practical experiments on the pendulum show the capability of the used
FSBLC algorithm to perform the task of improving control behavior
for repetitive task of such mechanical systems.

Keywords—Climbing stairs, FSBLC, ILC, Service robot.

I. INTRODUCTION

THE paper deals with the application of ILC-methods to
improve motion control of mechatronic systems. The

investigated ILC-methods where applied on two processes.
The first process is a transport robot for supporting elder and
disabled people. We consider the stair climbing problem as one
example for recurring control tasks that should be adapted to
the environmental conditions by ILC-methods. A requirement
for these robots is that they have to be affordable. This
paper is therefore addressed to the implementation of control
algorithms in particular ILC on low cost hardware for service
robots which perform repetitive motions during their work.
Fig. 1 shows different configurations of such a robot which
is intended for transporting goods. This robot is capable of
climbing stairs which is a difficult task for the control system
of the robot since it requires high torque dynamics and there
are also changing environmental conditions and possibly limits
in the drive performance. However, because of the repetitive
character of the motion the control behavior can be improved
by using ILC-Methods. The algorithm has to be suitable for
low cost hardware with limited computation time and storage
capacity. The second process is a propeller driven pendulum.
This system was chosen as a realtime test bench because of
its largely unknown non-linear process behavior.

FSBLC as a parametric iterative learning control method
can satisfy the requirements given above. In Section II, the
ILC-Method is briefly introduced. We describe the benefits and
explain the use of a FSBLC-structure in a PD-control system.
In Section III, the two application problems are explained.
For the real time investigations we used an available propeller
driven pendulum system. With respect to control engineering,
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Fig. 1 Design study of a stair climbing service robot

the requirements for a repetitive starting, flying and landing
procedure for this system are very similar to the stair climbing
problem. Some facts about the implementation on low cost
hardware are provided in Section IV. In Section V, some results
of the investigation are discussed.

II. PARAMETRIC ITERATIVE LEARNING CONTROL

Since the early eighties a variety of ILC methods was
developed, but as mentioned we set the requirement that
the control algorithms should be applicable for low cost
hardware. Most of the ILC methods require storage for the
entire trajectory of the manipulated variable. This leads to
high increase in memory demand with increasing length
and number of the trajectories which have to be learned.
Parametric ILC methods avoid this problem by learning only
a few parameters. This could be for example a number of
Fourier coefficients of the manipulated variable trajectory,
which will be transformed in the trajectory at the beginning
of a new cycle. Another benefit of these methods is that the
trajectory is filtered by parametrization, whereas other methods
need an additional filter algorithm to disable the learning of
higher frequencies, which often cause divergent behaviour.
An introduction and overview about parametric ILC-methods
can be found in [1] and [4], whereas Fourier series based
methods are described in [3], [5] and [2]. On the one hand
there are inversion based methods like secant method [3] or
Model-Less Inversion-Based Learning Control (MIIC) [2]. On
the other hand a method that learns the feed forward using
the manipulated variable calculated by a simple PD controller
is introduced in [5] for tracking control of nonlinear SISO
systems. The implementation of this method, which is called
FSBLC with PD controller, on problems described above is
investigated in the following.
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A. FSBLC with PD Controller

Fig. 2 shows the control scheme of FSBLC with a PD
controller, whereby the lower part is a simple control loop
with a PD controller designed by standard methods. The upper
part in Fig. 2 represents the learning algorithm that adapts the
feed forward after each cycle. yd(t) is the desired output, y(t)
the actual output of the system and e(t) the control error. The
system input u(t) is equal to the sum of the PD controller
output uPD(t) and the estimate of the optimal feed forward
uf (t). The learning algorithm determines the estimate of the
optimal feed forward as follows. All samples of one cycle of
the manipulated variable uPD(t) are stored in a memory uPD

to calculate a specified number of Fourier coefficients UPD at
the end of the cycle. These Fourier coefficients are multiplied
with the learning gain γ and added to the Fourier coefficients
of the previous cycle Uk.

Uk+1 = Uk + γUPD,k (1)

This results in the Fourier coefficients of the estimated optimal
feed forward Uk+1, which are used to determine the feed
forward for the next cycle uk+1 by inverse Fourier transform.

B. Parametrization

The learning gain γ has to be chosen between zero
and one. A higher gain leads to a faster convergence rate
of the tracking error, whereas a smaller gain should be
used to ensure stability. One drawback of a higher learning
gain is learning non repetitive disturbances faster, which
causes an additional control error in the next cycle without
this disturbance. The number of Fourier coefficients has
to be chosen considering the frequency components of the
desired output trajectory and the system bandwidth. By using
only selected frequency components the divergence causing
frequencies can be suppressed and furthermore this can reduce
computation time and storage requirements. In case of a large
time delay each frequency component can be phase shifted
to compensate for the delay like described in [6] for tracking
control of a belt-driven system.

III. PROCESS DESCRIPTION

A. Process 1

For a first investigation a model that includes the most
significant problems of climbing stairs is required. Therefore
we consider a robot with special wheels shown in Fig. 1
respectively the stair climbing wheel in Fig. 3 and make some
simplifications.

We assume that there is a direct driven stair climbing
wheel with a single arm perpendicular to the ground like a
stabilized inverted pendulum shown in Fig. 4. Such a stabilized
pendulum can easily be modelled with SimMechanics,
however, the stair climbing is hardly implementable with this
tool. To overcome this problem we estimate the additional
torque requirement caused by a step and add this to the
SimMechanics model. Considering the wheel in Fig. 4
respectively in Fig. 5 there can be seen that the required torque
jumps up as soon as the wheel contacts the next step and

has a minimum after a 90◦ rotation, since a simple rolling
movement follows until the next step is contacted. In the
following we determine the required torque caused by the
gravitational force and neglect the moment of inertia, Coriolis
and centrifugal force and friction, since this experiment is
intended to investigate how effective the FSBLC with PD
control can learn to handle unknown but recurrent torque
requirements so we need only a rough estimate of the required
torque trajectory. As well known the torque M [7] is calculated
with

M = l × F = |l| · |F| · sin(γ) (2)

where l is the vector between the rotary axis and the point
where the force is applied, F is the force, in this case the
gravitational force, which is calculated as follows

Fg = m · g (3)

and γ is the angle between l and F

γ = arcsin

(
r · sin(β)

l

)
. (4)

This results in
M = r · Fg · sin(β). (5)

The simulation experiment, which is shown in Fig. 6, is
implemented in Matlab Simulink. A PD controller is used
to control the velocity of the wheel that is simulated with
SimMechanics by using torque as manipulated variable. The
wheel has a radius of 183 mm and a weight of 2.2 kg, whereas
the arm has a length of 800 mm and a weight of 4.5 kg. The
task is learning to climb 3 stairs. Thereby Stateflow is used
on the one hand to control the input of the additional torque
that simulates the steps and on the other hand it controls
the FSBLC, that means for example enabling the learning
algorithm while climbing stairs and disable it for driving.

In this example, a learning of each separate step is also
possible, since the stairs have the same dimensions and the
distance between the rotary axis and the centre of mass l has
the same trajectory for each step. However, considering a robot
shown in Fig. 1, this trajectory is different at the beginning or
end of the stairs. Furthermore the stairs could have different
dimensions, therefore the entire stair should be learned as one
trajectory.

The simulation experiment is performed as described before
whereby the parameters of the FSBLC are a learning gain of
0.7 and the number of learned frequency components is 23.
A higher number of frequency components causes divergent
behaviour. The interval time is 4 s, this includes climbing the 3
stairs. After the stairs the wheel drives on a flat surface for 2 s,
before the next stair climbing interval starts. Fig. 7 shows the
simulation sequence for two cycles. It is assumed that the stairs
are climbed with a constant velocity so that the additional
torque can be implemented as a time depended trajectory. Of
course there is no constant velocity and the torque is rather
angle depended, but this requires some enhancements in future
work (see Section VI). The velocity is regulated by the PD
controller and should be constant 0.222 rev

s also between the
stair climbing intervals.
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Fig. 2 PD-Controller with FSBLC [5]

Fig. 3 Stair climbing wheel

Fig. 4 Stair climbing sequence

Fig. 5 Stair climbing wheel

B. Process 2

For the practical investigations we used an available
propeller driven pendulum connected to an xPC Target system

for control, which can be seen in Fig. 8. On the right side there
is a propeller generating thrust perpendicular to the pendulum
and on the left side a movable counterweight is fastened. The
manipulated variable is the voltage of the propeller motor and
the output is the angle of the pendulum. The task is that the
system has to fly some maneuvers that means in this example:

1) starting
2) flying
3) landing.
Fig. 11 shows the desired trajectories for each maneuver.

The management of these trajectories and the FSBLCs is
done via Stateflow. With respect to control engineering, the
requirements for this tasks are very similar to the stair climbing
problem, since this is also a nonlinear process with an angle
depending required torque. In contrast to the simulated process
we have the influence of friction and some non repetitive
disturbances like noise. There, an FSBLC with PD controller
is used to improve following the trajectories of the maneuver.
The learning gain is 0.5 and the first 10 frequency components
are learned whereas the sampling time is 10 ms.

IV. COMMENTS ON IMPLEMENTATION

As already mentioned the algorithm has to be suitable
for running on low cost hardware. For this reason it is
implemented on an STM32F446RE microcontroller and the
computation time is measured for different trajectory lengths
and numbers of frequency components. The STM32F446RE is
based on an ARM R© Cortex R©-M4 32-bit RISC core operating
at a clock frequency of up to 180 MHz [10] and costs
approximately 10 e. The most complex part of this algorithm
is the calculation of the frequency components respectively
the transform of the frequency components in a trajectory.
These calculations can be performed using a discrete Fourier
transform matrix A to calculate the Fourier transform

X̂ = x ·A (6)

and the inverse discrete Fourier transform matrix Ai to
determine the inverse Fourier transform [8].

x̂ = X̂ ·Ai (7)

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:10, No:8, 2016 

1397International Scholarly and Scientific Research & Innovation 10(8) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
0,

 N
o:

8,
 2

01
6 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
05

01
8.

pd
f



Fig. 6 Simplified Simulink model

Fig. 7 Simulation sequence

Fig. 8 Propeller driven pendulum

Both matrices can be calculated for example with Matlab

by using the dftmtx function (A = dftmtx(n)) respectively

Ai =
conj(dftmtx(n))

n

where n is the vector length [9]. These could be large square
matrices with complex values, since the dimension depends
on the trajectory length, which leads to a large number of
multiplications and additions respectively a high computation
time. Thus we need some assumptions. The trajectory x which
should be transformed consists of only real values, therefore
the result of the inverse transform x̂ is also real, since

x̂ = x ·A ·Ai

and
�{A ·Ai} = 0,

only the transform matrices and therefore the frequency
components X̂ are complex. Thus we can calculate the real
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Fig. 9 Simulation results of cycle 1 and cycle 8

Fig. 10 Euclidean error norm and maximum error (simulation)

Fig. 11 Propeller driven pendulum results of cycle 1 and cycle 8

part and imaginary part separately, that means X̂ and x̂ can
be calculated as follows

�
{
X̂
}
= x · � {A} (8)

�
{
X̂
}
= x · � {A} (9)

x̂ = �
{
X̂
}
· � {Ai} − �

{
X̂
}
· � {Ai} . (10)

Furthermore, X̂ is symmetrical that means the second
half is complex conjugate to the first half (except the direct

component)

X̂ =
[
a0 a1 + jb1 a2 + jb2 . . . a2 − jb2 a1 − jb1

]
and the corresponding elements of Ai are also complex
conjugate to each other. Thus we can multiply the frequency
components (except the direct component) by two and omit
the second part. As a result we only need half the number
of columns of A respectively of rows of Ai, plus one for
the direct component. As already mentioned only a few
frequency components are mostly required to learn, which
reduces the number of required columns respectively rows,
too. For example, if we like to learn the first l frequency
components (including the direct component) of a vector x
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Fig. 12 Propeller driven pendulum Euclidean error norm

with n elements, we have twice a multiplication of a vector
with n elements and a n× l matrix for the Fourier transform
resulting in two vectors with l elements (one vector for the
real part and imaginary part) i.e. in pseudo code:

A = dftmtx(n), A ∈ C
n×n

g = diag([1, 2 · ones(1, l − 1)]), g ∈ R
l×l

Xre = x · real(A(:, 1 : l)) · g, x ∈ R
1×n,Xre ∈ R

1×l

Xim = x · imag(A(:, 1 : l)) · g, x ∈ R
1×n,Xim ∈ R

1×l

For the inverse transform we need two multiplications of a
vector with l elements with a l × n matrix resulting in two
vectors with n elements, which are added together to get x̂.

Ai =
conj(dftmtx(n))

n
, Ai ∈ C

n×n

x̂ = Xre · real(Ai(1 : l, :))

−Xim · imag(Ai(1 : l, :)), x̂ ∈ R
1×n

The learning algorithm can be calculated in a separate
task at the end of the cycle, thus it has not be executed
in one sample. However, the calculation of x̂ has to be
real-time capable, since more than one trajectory respectively
the frequency components of these should be stored, for
example for climbing stairs with different loads. Therefore
the frequency components have to be read at the beginning of
the cycle and to be transformed in x̂ . Nevertheless only the
value for the actual sample s has to be calculated. Thus the
frequency components X̂ have to be multiplied only with the
corresponding column of Ai in each sample.

x̂s = Xre · real(Ai(1 : l, s))

−Xim · imag(Ai(1 : l, s)), x̂s ∈ R
1×1, s = 1...n

V. RESULTS AND DISCUSSION

A. Process 1

In Fig. 9 the simulation results of the stair climbing process
are shown whereby in the upper part the velocity set point
and the actual value of the first cycle can be seen. There
is a large control deviation caused by the additional torque
which simulated the stairs, so that the wheel almost stops.

The lower part of Fig. 9 presents the result of cycle 8 with
a significant improvement of the control deviation. As shown
in Fig. 10 both the Euclidean error norm and the maximum
error converge to a final value, which is nearly the result of
cycle 8.

Summarized the simulation experiment verified that FSBLC
with PD controller is a well suitable method for learning the
compensation of unknown torque requirements.

B. Process 2

Fig. 11 shows the practical investigation results of FSBLC
with PD controller applied on the described propeller driven
pendulum. Comparing the result of cycle one, where is no
influence of the FSBLC at all and only the PD controller is
working, with cycle 8, both shown in Fig. 11, a significant
improvement of trajectory tracking of the 3 maneuvers can be
seen. The Euclidean error norm in Fig. 12 indicates convergent
learning, even for changed system parameters i.e. for a shifted
center of mass due to moving the counterweight on the left
side of the pendulum. Practical investigations confirm the
effectiveness of FSBLC with PD controller in compensating
unknown repetitive torque requirements. Additionally, a
certain degree of robustness was experimentally verified due to
the convergent learning after changing the system parameters.

C. Time Measurement Study

The described parts of the algorithm are implemented
with trajectories of different lengths and different numbers
of frequency components that have to be learned on the
microcontroller for a time measurement study. The results
are presented in Table I, where l is the number of frequency
components, n is the trajectory length, t1 is the computation
time of the Fourier transform and t2 is the time for calculating
the inverse Fourier transform for one sample. There can be
seen that the algorithm is suitable also for longer trajectories
and higher numbers of frequency components, however, the
higher frequency components are mostly omitted, due to
generation of divergent behaviour. Furthermore, it is important
to choose a suitable sample time, since it determines the
trajectory length and thus the computation time. The maximum
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frequency that can be determined is half the sampling
frequency and the resolution is the reciprocal interval time.

TABLE I
COMPUTATION TIME

Frequency components l Trajectory length n t1(ms) t2(μs)

100 0.3191
5 500 1.581 1.88

1000 3.191

100 0.6402
10 500 3.181 2.68

1000 6.362

100 1.4505
30 500 7.282 6.6

1000 14.505

VI. CONCLUSION AND FUTURE WORK

The simulation as well as the practical experiment and
the comments on implementation verified FSBLC with PD
controller as an appropriate way to improve the stair climbing
problem. Future work will focus on investigation of the
angle dependency of the additional torque for climbing stairs
and under circumstances the development of methods for
learning an angle dependent feet forward. Another aspect is
the implementation of a supervision that disables or adapts the
learning in case of divergent behaviour.
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[1] Baqué, H., Zyklische Regelung von Mehrgrößenprozessen, Aachen:
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