Search results for: magnetic resonance coupling
584 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma
Authors: A. Abdikian
Abstract:
A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836583 Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System
Authors: Jeong-Min Jo, Young-Jae Han, Chang-Young Lee
Abstract:
Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev
Keywords: Magnetic Levitation system, Maglev, Permanent Magnets, Hybrid Magnet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515582 Inhibition on Conidial Germination of Colletotrichum gloeosporiodes and Pestalotiopsis eugeniae by Bacillus subtilis LB5
Authors: Onuma Ruangwong, Wen-Jinn Liang, S.Y. Zhang, Chi-I Chang
Abstract:
The effect of antifungal compound from Bacillus subtilis strain LB5 was tested against conidial germination of Colletotrichum gloeosporioides and Pestalotiopsis eugeniae, causal agent of anthracnose and fruit rot of wax apple, respectively. Observation under scanning electron microscope and light compound microscope revealed that conidial germination was completely inhibited when treated with culture broth, culture filtrate, or crude extract from strain LB5. Identification of purified antifungal compound produced by strain LB5 in cell-free supernatant by nuclear magnetic resonance and fast atom bombardment showed that the active compound was iturin A-2.Keywords: Iturin A-2, Bacillus subtilis LB5, Colleteotrichum gloeospporioides, Pestalotiopsis eugeniae, wax apple
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259581 Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter
Authors: P. Ram Mohan, M. Vijaya Kumar, O. V. Raghava Reddy
Abstract:
This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.
Keywords: Boost Converter, Power Factor Correction, Electro Magnetic Interference, Diode Rectifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3435580 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: D. A. Binas, M. Konidari, C. Bourgioti, L. Angela Moulopoulou, T. L. Economopoulos, G. K. Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is the most fatal gynecological cancer and poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study presents a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series, in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.
Keywords: K-means segmentation, ovarian epithelial cancer, quantitative characteristics, registration, tumor visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698579 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches
Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin
Abstract:
The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.
Keywords: MEMS switch, magnetic sensitivity, magnetic concentrator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732578 Effects of Irradiation to Morphological, Physicochemical and Biocompatibility Properties of Carrageenan
Authors: Jhalique Jane R. Fojas, Rizalinda L. De Leon, Lucille V. Abad
Abstract:
The characterization of κ-carrageenan could provide a better understanding of its functions in biological, medical and industrial applications. Chemical and physical analyses of carrageenan from seaweeds, Euchema cottonii L., were done to offer information on its properties and the effects of Co-60 γ-irradiation on its thermochemical characteristics. The structural and morphological characteristics of κ-carrageenan were determined using scanning electron microscopy (SEM) while the composition, molecular weight and thermal properties were determined using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Further chemical analysis was done using hydrogen-1 nuclear magnetic resonance (1H NMR) and functional characteristics in terms of biocompatibility were evaluated using cytotoxicity test.Keywords: Biocompatibility, carrageenan, DSC, FTIR, GPC, irradiation, NMR, physicochemical, SEM, TGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557577 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field
Authors: Sanjay Baburao Kulkarni
Abstract:
Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.
Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932576 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution
Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria
Abstract:
We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.Keywords: Microfluidics, magnetic nanoparticles, continuous production, nanomaterials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987575 Modeling of Sensitivity for SPR Biosensors- New Aspects
Authors: Volodymyr Chegel
Abstract:
The computer modeling is carried out for parameter of sensitivity of optoelectronic chemical and biosensors, using phenomena of surface plasmon resonance (SPR). The physical model of SPR-sensor-s is described with (or without) of modifications of sensitive gold film surface by a dielectric layer. The variants of increasing of sensitivity for SPR-biosensors, constructed on the principle gold – dielectric – biomolecular layer are considered. Two methods of mathematical treatment of SPR-curve are compared – traditional, with estimation of sensor-s response as shift of the SPRcurve minimum and proposed, for system with dielectric layer, using calculating of the derivative in the point of SPR-curve half-width.Keywords: Surface Plasmon Resonance, modeling, sensitivity, biosensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067574 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach
Authors: S.H. Mirtalaie, M.A. Hajabasi
Abstract:
In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.
Keywords: Free vibration, laminated composite beam, material coupling, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290573 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.
Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524572 Detection, Tracking and Classification of Vehicles and Aircraft based on Magnetic Sensing Technology
Authors: K. Dimitropoulos, N. Grammalidis, I. Gragopoulos, H. Gao, Th. Heuer, M. Weinmann, S. Voit, C. Stockhammer, U. Hartmann, N. Pavlidou
Abstract:
Existing ground movement surveillance technologies at airports are subjected to limitations due to shadowing effects or multiple reflections. Therefore, there is a strong demand for a new sensing technology, which will be cost effective and will provide detection of non-cooperative targets under any weather conditions. This paper aims to present a new intelligent system, developed within the framework of the EC-funded ISMAEL project, which is based on a new magnetic sensing technology and provides detection, tracking and automatic classification of targets moving on the airport surface. The system is currently being installed at two European airports. Initial experimental results under real airport traffic demonstrate the great potential of the proposed system.Keywords: Air traffic management, magnetic sensors, multitracking, A-SMGCS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933571 Automatic Deactivation in Phased Array Probe for Human Prostate Magnetic Resonance Imaging at 1.5T
Authors: Fotios N. Vlachos, Anastasios D. Garetsos, Nikolaos K. Uzunoglu, Efstathios D. Gotsis
Abstract:
A four element prototype phased array surface probe has been designed and constructed to improve clinical human prostate spectroscopic data. The probe consists of two pairs of adjacent rectangular coils with an optimum overlap to reduce the mutual inductance. The two pairs are positioned on the anterior and the posterior pelvic region and two couples of varactors at the input of each coil undertake the procedures of tuning and matching. The probe switches off and on automatically during the consecutive phases of the MR experiment with the use of an analog switch that is triggered by a microcontroller. Experimental tests that were carried out resulted in high levels of tuning accuracy. Also, the switching mechanism functions properly for various applied loads and pulse sequence characteristics, producing only 10 μs of latency.Keywords: Automatic tuning, prostate imaging, phased array, spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680570 Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation
Authors: N.S. Pradhan, S.K. Dubey, A. D.Yadav, Arvind Singh, D.C. Kothari
Abstract:
Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.Keywords: GaN, Ion implantation, XRD, AFM, SQUID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945569 Synthesis of Hard Magnetic Material from Secondary Resources
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy, O. N. Alzeghaibi
Abstract:
Strontium hexaferrite (SrFe12O19; Sr-ferrite) is one of the well-known materials for permanent magnets. In this study, Mtype strontium ferrite was prepared by following the conventional ceramic method from steelmaking by-product. Initial materials; SrCO3 and by-product, were mixed together in the composition of SrFe12O19 in different Sr/Fe ratios. The mixtures of these raw materials were dry-milled for 6h. The blended powder was presintered (i.e. calcination) at 1000°C for different times periods, then cooled down to room temperature. These pre-sintered samples were re-milled in a dry atmosphere for 1h and then fired at different temperatures in atmospheric conditions, and cooled down to room temperature. The produced magnetic powder has a dense hexagonal grain shape structure. The calculated energy product values for the produced samples ranged from 0.3 to 2.4 MGOe.
Keywords: Ceramic route, Hard magnetic materials, Strontium ferrite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359568 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765567 A Microwave Bandstop Filter Using Defected Microstrip Structure
Authors: H. Elftouh, N. T. Amar, M. Aghoutane, M. Boussouis
Abstract:
In this paper, two bandstop filters resonating at 5.25 GHz and 7.3 GHz using Defected Microstrip Structure (DMS) are discussed. These slots are incorporated in the feed lines of filters to perform a serious LC resonance property in certain frequency and suppress the spurious signals. Therefore, this method keeps the filter size unchanged and makes a resonance frequency that is due to the abrupt change of the current path of the filter. If the application requires elimination of this band of frequencies, additional filter elements are required, which can only be accomplished by adding this DMS element resonant at desired frequency band rejection. The filters are optimized and simulated with Computer Simulation Technology (CST) tool.
Keywords: Defected microstrip structure, microstrip filters, passive filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373566 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque
Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina
Abstract:
MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.
Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3572565 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation
Authors: Jeong-Won Kang
Abstract:
Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717564 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires
Authors: Musaab Salman Sultan
Abstract:
The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.
Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763563 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner
Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam
Abstract:
Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380562 Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties
Authors: Valentina Koliskina
Abstract:
Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.Keywords: Eddy currents, magnetic permeability, Besselfunctions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773561 Comparison of Fricative Vocal Tract Transfer Functions Derived using Two Different Segmentation Techniques
Authors: K. S. Subari, C. H. Shadle, A. Barney, R. I. Damper
Abstract:
The acoustic and articulatory properties of fricative speech sounds are being studied using magnetic resonance imaging (MRI) and acoustic recordings from a single subject. Area functions were derived from a complete set of axial and coronal MR slices using two different methods: the Mermelstein technique and the Blum transform. Area functions derived from the two techniques were shown to differ significantly in some cases. Such differences will lead to different acoustic predictions and it is important to know which is the more accurate. The vocal tract acoustic transfer function (VTTF) was derived from these area functions for each fricative and compared with measured speech signals for the same fricative and same subject. The VTTFs for /f/ in two vowel contexts and the corresponding acoustic spectra are derived here; the Blum transform appears to show a better match between prediction and measurement than the Mermelstein technique.
Keywords: Area functions, fricatives, vocal tract transferfunction, MRI, speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652560 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795559 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect
Authors: Kai-Long Hsiao
Abstract:
A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584558 Frequency Modulation in Vibro-Acoustic Modulation Method
Authors: D. Liu, D. M. Donskoy
Abstract:
The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.
Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500557 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields
Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen
Abstract:
The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.
Keywords: Cardiac Pacemaker, Electric Field, Magnetic Field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538556 Description of Unsteady Flows in the Cuboid Container
Authors: K. Horáková, K. Fraňa, V. Honzejk
Abstract:
This part of study deals with description of unsteady isothermal melt flow in the container with cuboid shape. This melt flow is driven by rotating magnetic field. Input data (instantaneous velocities, grid coordinates and Lorentz forces) were obtained from in-house CFD code (called NS-FEM3D) which uses DDES method of computing. Description of the flow was performed by contours of Lorentz forces and caused velocity field. Taylor magnetic numbers of the flow were used 1.10^6, 5.10^6 and 1.10^7, flow was in 3D turbulent flow regime.
Keywords: In-house computing code, Lorentz forces, magnetohydrodynamics, rotating magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588555 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.
Keywords: Cardiac MRI, Graph searching, Left ventricle segmentation, K-means clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094