Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30006
Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109836

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF

References:


[1] G. I. Giannopoulos, I. A. Liosatos, and A. K. Moukanidis,” Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach,” Physica E, vol. 44, pp. 124–134, Oct. 2011.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, pp. 197–200, Nov.2005.
[3] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, P. L. McEuen, “Mechanical properties of suspended graphene sheets,” Journal of Vacuum Science Technology B, vol. 25, pp. 2558–2561, Nov./Dec.2007.
[4] V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias, and P. L. McEuen, “A tunable carbon nanotube electromechanical oscillator,” Nature, vol. 431, pp. 284–287, Sep. 2004.
[5] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science, vol. 315, pp. 490–493, Jan. 2007.
[6] O. K. Kwon, J. H. Lee, K.-S. Kim, and J. W. Kang, “Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation” Physica E, vol. 47, pp. 6–11, Jan. 2013.
[7] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater., vol. 6, pp. 652–655, July 2007.
[8] C. Y. Wang, K. Mylvaganam, and L. C. Zhang, “Wrinkling of monolayer graphene: A study by molecular dynamics and continuum plate theory,” Phys. Rev. B, vol. 80, pp. 155445, Oct. 2009.
[9] S. Jun, T. Taxhi, and H. S. Park, “Size-Dependence of the Nonlinear Elastic Softening of Nanoscale Graphene Monolayers Under Plane-Strain Bulge Tests,” J. Nanomater., vol. 2001, pp. 380286, 2011.
[10] V. Sorkin and Y. W. Zhang, “Graphene-based pressure nano-sensors,” J. Mol. Mater., vol. 17, pp. 2825–2830, 2011.
[11] M. Poot and H. S. J. van der Zant, “Nanomechanical properties of few-layer graphene membranes,” Appl. Phys. Lett., vol. 92, pp. 063111, Feb. 2008.
[12] C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout,” Nature Nanotechnol., vol. 4, pp. 861–867, Sep. 2009.
[13] K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, “All graphene electromechanical switch fabricated by chemical vapor deposition,” Appl. Phys. Lett., vol. 95, pp. 183105, Nov. 2009.
[14] J. Tersoff, Phys. Rev. B, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” vol. 39, pp. 5566–5568, March 1989.
[15] D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Phys. Rev. B, vol. 42, pp. 9458–9471, Nov. 1990.
[16] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, (2008).
[17] K. T. Wan, S. Guo, and D. A. Dillard, “A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress,” Thin Solid Films, vol. 425, pp. 150–162, Feb. 2003.
[18] U. Komaragiri and M. R. Begley, “The Mechanical Response of Freestanding Circular Elastic Films Under Point and Pressure Loads,” J. Appl. Mech., vol. 72, pp. 203–212, Mar. 2005.
[19] E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, “Nonlinear elasticity of monolayer graphene,” Phys. Rev. Lett., vol. 102, pp. 235502, June 2009.
[20] J. Zhou and R. Huang, “Internal lattice relaxation of single-layer graphene under in-plane deformation,” J. Mech. Phys. Solids, vol. 56, pp. 1609-1623, Apr. 2008.
[21] M. Arroyo and T. Belytschko, “Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule,” Phys. Rev. B, vol. 69, pp. 115415, Mar. 2004.
[22] N. M. Bhatia and W. Nachbar, “Finite indentation of an elastic membrane by a spherical indenter,” Int. J. Non-Linear Mech., vol. 3, pp. 307–324, Sep. 1968.
[23] O. K. Kwon, G.-Y. Lee, H. J. Hwang, and J. W. Kang, “Molecular dynamics modeling and simulations to understand gate-tunable graphene-nanoribbon-resonator,” Physica E, vol. 45, pp. 194–200, Aug. 2012.
[24] O. K. Kwon, J. H. Lee, J. Park, K.-S. Kim, and J. W. Kang, “Molecular dynamics simulation study on graphene-nanoribbon-resonators tuned by adjusting axial strain,” Curr. Appl. Phys., vol. 13, pp. 360–365, Mar. 2013.
[25] A. Isacsson, “Nanomechanical displacement detection using coherent transport in graphene nanoribbon resonators,” Phys. Rev. B, vol. 84, pp. 125452, Sep. 2011.
[26] S. K. Georgantzinos, G. I. Giannopoulos, D. E. Katsareas, P. A. Kakavas, and N. K. Anifantis, “Size-dependent non-linear mechanical properties of graphene nanoribbons,” Computat. Mater. Sci., vol. 50, pp. 2057–2062, May 2011.
[27] S. K. Georgantzinos, D. E. Katsareas, and N. K. Anifantis, “Graphene characterization: A fully non-linear spring-based finite element prediction,” Physica E, vol. 43, pp. 1833–1839, Aug. 2011.
[28] H. Bu, Y. Chen, M. Zou, H. Yia, K. Bi, and Z. Ni, “Atomistic simulations of mechanical properties of graphene nanoribbons,” Phys. Lett. A, vol. 373, pp. 3359–3362, Sep. 2009.
[29] H. Zhao, K. Min, and N. R. Aluru, “Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension” Nano Lett., vol. 9, pp. 3012–3015, Aug. 2009.
[30] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable Atomic Membranes from Graphene Sheets” Nano Lett., vol. 8, pp. 2458–2462, Aug. 2008.
[31] W. H. Duan and C. M. Wang, “Nonlinear bending and stretching of a circular graphene sheet under a central point load,” Nanotechnology, vol. 20, pp. 075702, Feb. 2009.
[32] S. Shivaraman, R. A. Barton, X. Yu, J. Alden, L. Herman, M. V. S. Chandrashekhar, J. Park, P. L. McEuen, J. M. Par-pia, H. G. Craighead, and M. G. Spencer, “Free-Standing Epitaxial Graphene,” Nano Lett., vol. 9, pp. 3100–3105, Sep. 2009.
[33] F. Traversi, F. J. Gúzman-Vázquez, L. G. Rizzi, V. Russo, C. S. Casari, C. Gómez-Navarro, and R. Sordan, “Elastic properties of graphene suspended on a polymer substrate by e-beam exposure,” New J. Phys., vol. 12, pp. 023034, Feb. 2010.
[34] J. Atalaya, A. Isacsson, and J. M. Kinaret, “Continuum Elastic Modeling of Graphene Resonators,” Nano Letters, vol. 8, pp. 4196–4200, Oct. 2008.