Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: Microfluidics, magnetic nanoparticles, continuous production, nanomaterials.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107083

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994

References:


[1] Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem Rev 2012, 112, 5818-5878.
[2] Xiao, L.; Li, J.; Brougham, D. F.; Fox, E. K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M.; Fadeel, B.; Mathur, S. Water-Soluble Superparamagnetic Magnetite Nanoparticles with Biocompatible Coating for Enhanced Magnetic Resonance Imaging. Acs Nano 2011, 5, 6315-6324.
[3] Sebastian, V.; Arruebo, M.; Santamaria, J. Reaction Engineering Strategies for the Production of Inorganic Nanomaterials. Small 2014, 10, 835-853.
[4] Correa, J. R.; Canetti, D.; Castillo, R.; Llopiz, J. C.; Dufour, J. Influence of the precipitation pH of magnetite in the oxidation process to maghemite. Mater Res Bull 2006, 41, 703-713.
[5] Massart, R.; Cabuil, V. Effect of Some Parameters on the Formation of Colloidal Magnetite in Alkaline-Medium - Yield and Particle-Size Control. J Chim Phys Pcb 1987, 84, 967-973.
[6] Jovanovic, S.; Spreitzer, M.; Otonicar, M.; Jeon, J. H.; Suvorov, D. pH control of magnetic properties in precipitation-hydrothermal-derived CoFe2O4. J Alloy Compd 2014, 589, 271-277.
[7] Verges, M. A.; Costo, R.; Roca, A. G.; Marco, J. F.; Goya, G. F.; Serna, C. J.; Morales, M. P. Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit. J Phys D Appl Phys 2008, 41.
[8] Marre, S.; Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 2010, 39, 1183-1202.
[9] Calatayud, M. P.; Riggio, C.; Raffa, V.; Sanz, B.; Torres, T. E.; Ibarra, M. R.; Hoskins, C.; Cuschieri, A.; Wang, L.; Pinkernelle, J.; Keilhofff, G.; Goya, G. F. Neuronal cells loaded with PEI-coated Fe3O4 nanoparticles for magnetically guided nerve regeneration. J Mater Chem B 2013, 1, 3607-3616.
[10] Iida, H.; Takayanagi, K.; Nakanishi, T.; Osaka, T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties 14 by controlled hydrolysis. J Colloid Interf Sci 2007, 314, 274-280.
[11] Nagy, K. D.; Shen, B.; Jamison, T. F.; Jensen, K. F. Mixing and Dispersion in Small-Scale Flow Systems. Org Process Res Dev 2012, 16, 976-981.
[12] Cabeza, V. S.;Kuhn, S.;Kulkarni, A. A.; Jensen, K. F. Size-Controlled Flow Synthesis of Gold Nanoparticles Using a Segmented Flow Microfluidic Platform. Langmuir 2012, 28, 7007-7013.
[13] Colfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Edit 2005, 44, 5576-5591.
[14] Baumgartner, J.; Dey, A.; Bomans, P. H. H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N. A. J. M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat Mater 2013, 12, 310-314.
[15] Gomez, L.; Sebastian, V.; Irusta, S.; Ibarra, A.; Arruebo, M.; Santamaria, J. Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles. Lab Chip 2014, 14, 325-332.
[16] R. M. Cornell, U. S. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. WILEY-VCH; Weinheim, 2003.
[17] Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Hydrodynamics of Liquid-Liquid Dispersion in an Advanced-Flow Reactor. Ind Eng Chem Res 2012, 51, 16251-16262.
[18] Gunther, A.; Khan, S. A.; Thalmann, M.; Trachsel, F.; Jensen, K. F. Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 2004, 4, 278-286.
[19] Khan, S. A.; Gunther, A.; Schmidt, M. A.; Jensen, K. F. Microfluidic synthesis of colloidal silica. Langmuir 2004, 20, 8604-8611.