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Abstract—The vibroacoustic modulation method is based on the 

modulation effect of high-frequency ultrasonic wave (carrier) by low-
frequency vibration in the presence of various defects, primarily 
contact-type such as cracks, delamination, etc. The presence and 
severity of the defect are measured by the ratio of the spectral 
sidebands and the carrier in the spectrum of the modulated signal. This 
approach, however, does not differentiate between amplitude and 
frequency modulations, AM and FM, respectfully. This paper is an 
attempt to explain the generation mechanisms of FM and its correlation 
with the flaw properties. Here we proposed two possible mechanisms 
leading to FM modulation based on nonlinear local defect resonance 
and dynamic acoustoelastic models. 
 

Keywords—Non-destructive testing, nonlinear acoustics, 
structural health monitoring, acoustoelasticity, local defect resonance. 

I. INTRODUCTION 

N last two decades, the Vibro-Acoustic Modulation (VAM) 
method gained increasing interest due to its sensitivity to tiny 

defect. This method utilizes nonlinear interaction (modulation) 
of a high frequency ultrasonic wave (carrier signal) having 
frequency ω and a low frequency sound wave (modulating 
vibration) with frequency Ω ≪ ω [1]-[5]. The modulation is 
taking place in the presence of various flaws such as fatigue and 
stress-corrosion cracks, disbonds, etc., Fig. 1. The most 
common cause of a flaw’s nonlinear behavior is the contact-
type interfaces within these defects, though there are several 
other nonlinear mechanisms have been proposed, such as 
hysteretic, thermo-elasticity and nonlinear dissipation [2]. 

 

 

Fig. 1 Schematic representation of VAM method: The input signal (a) 
is a combination of a high-frequency wave (probe wave) and a low-

frequency wave (pump wave); the output signal (b) will be a 
modulated signal with a low frequency component which can be 

filtered out 
 

Most of the reported VAM studies [1]-[5] correlate flaw 
presence and its growth with the increase in the Modulation 
Index (MI) which is defined by [1]-[5]: 

 

MI ൌ 20 logଵ଴
୅ಡషಈା୅ಡశಈ 

ଶ୅ಡ
         (1) 

 
where Aω is the magnitude carrier component in the spectrum 
and Aω±Ω are the magnitude of its first sidebands. MI is the 
index used for describing the AM intensity of the signal, 
however, the higher order sidebands, as shown in Fig. 2, (Aω±nΩ, 
n = 2, 3, 4…) indicate that the modulation may be more 
complex to include phase/frequency modulation as well. The 
conventional VAM method does not distinguish between AM 
and FM. Separate evaluation and monitoring of AM and FM 
could be very beneficial in understanding of flaw evolution 
mechanisms, separating defect-related nonlinearity from 
structural and material nonlinearities, improving sensitivity and 
reliability of the VAM method [6]. However, just a few papers 
[6], [7] addressed FM/AM separation in VAM testing as it is 
assumed that the dominant modulation mechanism is AM. The 
experimental results presented in [6] clearly indicate the 
presence of the FM which could be dominant modulation at 
least in the initial flaw progression. In this paper, we introduce 
two possible FM flaw-related mechanisms: nonlinear local 
defect resonance and acoustoelastic FM generation. 
 Frequency Modulation Due to Local Defect Resonance 

A. Local Defect Resonance 

Solodov introduced the concept of Local Defect Resonance 
(LDR) [9], [10], which treats the defect as an oscillator. When 
the structure is forced by an external dynamic load whose 
frequency is close to the resonance of the local defect, the 
energy of vibration will be effectively transmitted to the local 
defect area and lead the local defect-oscillator to a 
distinguishable resonating response in the vicinity of the defect. 
A considerable literature on LDR had grown around the study 
of the flat-bottomed hole (FBH), Fig. 3 [10]-[12]. FBH model 
is utilized for simulating a typical defect that often exists in 
composite materials due to delamination. 
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Fig. 2 Spectrum of signal that acquired from a sample at its undamaged stage (a) and its damaged stage (b). The sidebands of the intact sample 
are due to the structural/material nonlinearity; the increase in the amplitude of the first sideband is the evidence of the damage within the 

structure 
 

 

Fig. 3 Sketch of the FBH 
 

FBH can be considered as a circular plate with a thickness of 
h and a radius of R0. The boundary condition along its edges is 
clamped (no rotation nor displacement) [8]. The integration of 
the displacement of the lowest vibration mode of the plate over 
its surface is defined as the effective displacement Ueff. We 
substitute effective displacement Ueff, the kinetic energy WK 
and potential energy WP of the plate that calculated by the plate 
theory [13] into (2): 

 

W୏ ൌ
୫౛౜౜୙౛౜౜

మ

ଶ
, W୔ ൌ

୩౛౜౜୙౛౜౜
మ

ଶ
       (2) 

 
where keff and meff are oscillator’s effective stiffness and 
effective mass, respectively, therefore FBH angular resonance 
frequency equals to: 
 

f୐ୈୖ ൌ ଵ

ଶ஠
ට

୩౛౜౜

୫౛౜౜
           (3) 

 
Numerous numerical simulations and experimental studies 

confirmed the analytical estimation of the FBH [10]-[12]. 
Additionally, it was found that the concept of LDR can also be 
applied to other types of defects, such as impact damages and 
crack type defects [12]-[14]. Although these experimental 
results demonstrated that crack damage could be detectable 
using LDR resonance response, FBH model (relying of the 
bending resonance of relatively thin bottom plate with thickness 
h, Fig. 3), may not be appropriate for these type of defect in 
voluminous materials (no bottom plate). Therefore, the LDR 
mechanism for defects within voluminous material cannot rely 
on bottom plate resonance and yet to be proved in simulations. 
We assume that a defect in unbounded media may still behave 

as an oscillator whose effective stiffness is determined by the 
defect compliance, while the effective mass is due to entrained 
oscillating material mass in the vicinity of the defect (similar to 
an oscillating bubble in fluid).  

We will use numerical simulation using COMSOL/the Solid 
Mechanics (Elastic Waves) interface/Frequency Domain for a 
defect which is embedded inside a large volume of material 
with none- or low-reflective boundaries, as shown in Fig. 4. 

 
Assuming that the defect has a circular shape with a radius 

“a”, if the defect (crack) is open, it will resemble an oblate 
spheroidal cavity. The ratio of the major axis b and the minor 
axis a is called the axis ratio (AR). When the applied tensile 
load is changing, the AR of the cavity will be changing 
accordingly. Let us first consider a case that AR = 1, the shape 
of the cavity is spherical. The characteristic frequency of a 
spherical cavity in the infinite material that is [14]: 

 

fୱ୮୦ୣ୰ୣ ൌ ୡ౩

஠ୟ
          (4) 

 
where cs is the shear wave velocity in surrounding material, and 
a is the sphere’s radius. As the AR increases, the shape of the 
cavity would be altered from sphere to oblate spheroid, and the 
value of the characteristic frequency will decrease [15]. 

Numerical modeling and simulation were conducted by 
using the COMSOL Multiphysics –the Solid Mechanics 
interface (Elastic Waves)/Frequency Domain. The semi-
infinite material is simulated by a cylinder with a roller side 
boundary condition, Fig. 5. Only the vertical displacement (the 
displacement along the direction of the plane wave propagates) 
is allowed. The plane wave is generated by the prescribed 
displacement on the top and will be damped out at the bottom 
by the low-reflecting boundary condition. 

The material is steel with Young’s modulus E = 200 GPa, 
density ρ = 7850 kg/m3. The elongation in the vertical direction 
of an infinitesimal volume inside the semi-infinite material is 
accompanied by horizontal shortening due to the Poisson’s 
effect. Because horizontal displacement is prohibited in an 
infinite material, a vertical propagating plane wave will cause 
horizontal stress, which does not exist in a practical structure 
with free boundary conditions. A compromising approach for 
simulating the plane wave in infinite material is to use a 
Poisson’s ratio that is close to 0.5 so that the bulk modulus of 
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the material is extremely large, and the vertical stress is then 
negligible. 

 

 

 

Fig. 4 In the semi-infinite material, a sinusoidal plane wave was propagating toward to the surface of the crack; the opened crack is modeled as 
an oblate spheroid 

 

 

Fig. 5 Configuration of the boundary condition of the COMSOL 
model; axial symmetry is the axis of the cylinder; roller is the side 

wall of the cylinder; prescribed displacement at the top is the source 
of plane wave with the low-reflecting boundary at the bottom 

 
Although there will be an acceptable discrepancy between 

the estimated and simulated resonance of the cavity (the 
estimated, (4), LDR frequency is 1.66 kHz for the spherical 
cavity with a radius of 6 mm embedded in steel with a Poisson’s 
ratio of 0.3). When the Poisson’s ratio is 0.4999, the simulated 
LDR frequency is 1.54 kHz. Vibration pattern of the local 
defect can be shown by the finite element simulation. When 
there is no cavity, there are no standing wave and reflection, and 
the vibration stress distribution of the cylinder should be 
uniform, as indeed demonstrated in Fig. 6 (a). When a spherical 
cavity is introduced in to the material, the stress on the intact 
area remains uniform while the stress around the sphere is 
elevated showing monopole distribution, Fig. 6 (b). 

For simulating the resonance with different AR values, 
Young’s modulus of the material is decreased to 0.2 GPa, and 
the radius of the sphere is increased to 2.5 cm in order to reduce 
the computation time. The simulated result agrees with the 
result in [15]. In the application process of VAM, the pump 
wave (low-frequency stress) will periodically change the shape 

of the defect varying AR. Knowing that the characteristic 
frequency of the cavity is dependent on AR, the resonance 
response of the crack will change accordingly, Fig. 7. 

 

 

Fig. 6 Stress distribution of the intact cylinder (a), and the cylinder 
with the cavity (b) 

 

 

Fig. 7 The frequency response (vibrating velocity) of a point located 
on the surface of the cavity; The cavity with axis ratio AR = 1 

(sphere), has highest resonance frequency than the cavities with 
greater AR (oblate spheroids) 
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B. LDR Vibro-Acoustic Frequency Modulation  

Following LDR mass-spring model, we will utilize a generic 
mass-spring oscillator equation for the local strain, ξ: 

 

mξሷ ൅ bξሶ ൅ kξ ൌ Acosሺωtሻ        (5) 
 
where b is the spring’s damping coefficient, A is the amplitude 
of the incident carrier wave with the frequency ω.  

LDR simulation results illustrated in Fig. 7 show that the 
resonance frequency is reduced with increased AR ratio which, 
in turn, is determined by the applied stress σ = Bcos(Ωt). This 
reduction in the resonance frequency can be explained by 
reduction in the cavity stiffness, therefore: 

  
kୣ୤୤  ൌ  kሺσሻ  ൌ  kሺΩtሻ         (6) 

 
Since Ω ≪ ω, the stiffness changes are slow compared to 

period of oscillation 2π/ω. Additionally, we assume that these 
changes are small and proportional to low frequency dynamic 
function (vibration): 

 
kሺΩtሻ ≅  k଴ െ  Δk cosሺΩtሻ        (7) 

 
where Δk ≪ k଴. Under the above assumptions, we can use the 
linear solution of (7) where amplitude and phase are functions 
of slow and small changing stiffness k(Ωt): 

 

ξሺtሻ ൌ
୅

ඥሺ୩ሺஐ୲ሻି୫னమሻమାୠమனమ cosሺωt െ ϕሺΩtሻሻ    (8) 

 
where, 

ϕሺΩtሻ ൌ tanିଵ  ቀ
ୠன

୩ሺஐ୲ሻି୫னమቁ       (9) 

 
As can be seen from (8) and (9), the LDR model with 

parametric stiffness (7) yields both amplitude and frequency 
modulations. These can be illustrated using amplitude and 
frequency responses as they are shifted right and left with 
frequency Ω, Fig. 8. 

 

 

Fig. 8 Amplitude (a) and Phase (b) frequency responses, (8) and (9), 
as dynamic function cosሺΩtሻ varies from -1 (dotted line), to 0 (solid 
line), and to +1 (dashed line): 2mୟ and 2m୤ are respective amplitude 

and phase varying range (mୟ and m୤ are MI es) for a signal with 
carrier frequency ω (vertical solid line) 

 
This simple model of the slow varying (modulating) 

frequency responses allows direct calculation of AM and FM 
modulating indexes, mୟ and m୤, respectively, as illustrated in 
Fig. 8. This model also shows that the degree of AM and FM 
depends on carrier frequency proximity to the resonance 
frequency, fLDR (3). 

Fig. 9 (a) shows dependence of mୟ  and m୤  as function of 
ω/ω଴. Interestingly, it shows dominant FM near and above the 
resonance frequency, while AM dominates below 0.8ω଴. It also 
shows extremely high modulations in the close proximity to the 
resonance. With increased damping, the FM dominance over 
AM spreads even more, while, as expected, MI are reduced in 
the resonance direct proximity, Fig. 9 (b). 

 

 

Fig. 9 AM and FM indexes vs. frequency ratio ω/ω଴ using direct calculations from frequency responses as shown in Fig. 8: In this exemplarity 
calculations the following parameter values were used: Meff ൌ 0.001, k଴ ൌ 35000, Δk ൌ  0.1k଴, Ω/2π ൌ 10Hz, b ൌ  0.3 (a) and b ൌ 0.9 (b) 
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II. FREQUENCY MODULATION DUE TO ACOUSTOELASTICITY 

Another possible mechanism of FM is due to the 
Acoustoelastic (AE) effect. The AE effect is the change in 
velocity of ultrasonic waves due to applied stress. Such stress-
velocity relation may change when the higher order elastic 
coefficient of the structure changed by the imperfections such 
as micro- or macro-defects. Initially, this phenomenon was 
described for static stresses, [16], [17] and later was shown that 
it has also taken place for quasi-static or low frequency 
vibration: Dynamic Acoustoelasticity (DAE) [18]. 

DAE study demonstrated a noticeable change in the 
ultrasonic velocity near damaged region of the tested material 
and insignificant or no changes (for the level of applied 
vibration stresses) for undamaged (intact) regions. Neglecting a 
small hysteretic behavior observed in the tests, [2], the velocity 
change due to applied low frequency harmonic stress σ ൌ
 BcosሺΩtሻ can be approximated as follows:  

 
c ≅  c଴ ൅ Δc cos Ωt        (10) 

 
Here, the c଴ the ultrasonic velocity of the test structure without 
any external stress, Δc  is the maximum velocity deviation 
attributed to the external dynamic stress.  

We consider the one-dimensional case: the traveling acoustic 
(carrier) wave with the frequency ω propagates through a 
damaged region having length Δx. Within this region the sound 
speed is modulated as per (10), while outside the region the 
sound speed is constant and equal to c଴ . Accordingly, the 
traveling wave can be described as: 

 

ε ~ cos ቂω ቀt െ ୶ି∆୶

ୡబ
െ ∆୶

ୡ
ቁቃ       (11) 

 
where c is defined by (10), ɛ is the strain, and x is the traveling 
distance. 

Assuming Δc/c଴ ≪ 1 and using the Tylor’s expansion, 
 

1

c
ൌ

1

c0ቀ1൅
Δc

c0
cos Ωtቁ

≅
1

c0
െ

Δc

c0
2 cos Ωt     (12) 

 
Equation (11) can be re-written as following after 

substituting (12) into (11): 
 

ε ~ cos ቂω ቀt െ ୶

ୡబ
൅ ∆୶∆ୡ

ୡబ
మ cos ሺΩtሻቁቃ     (13) 

 
From (13), one can see that the traveling wave is frequency 

modulated with the MI: 
 

mf ≅
ω∆x∆c

2c0
2           (14) 

 
Using experimental data presented in [18], we can evaluate 

the possible frequency MI as per (14). DAE test of [18] was 
conducted using aluminum alloy A7075 sample having sound 
velocity c଴ = 6250 m/s, with the fatigue crack of length Δx = 19 
mm: relative velocity deviation observed along the crack 
Δc/c଴  ∼ 0.001 and as high as 0.003 at some locations. The 

probe wave frequency of DAE is much greater than VAM test. 
The high frequency used in [18] was 2 MHz and low vibration 
frequency was 7 kHz. DAE test measures the time of flight of 
the high frequency signal to measure ultrasonic velocity and its 
deviation due to low frequency stress. If this test would be 
configured as VAM test using the same high frequency signal 
as the carrier and low frequency as the modulating vibration, it 
would measure, (14), FM index m୤ ∼ 0.02 or -34 dB which is 
very high by VAM standards.  

VAM tests typically use a low carrier and vibration 
frequencies; 100 kHz to 200 kHz for the carrier and 10 s to 100 
s of Hz for the modulating vibration. Although lower carrier 
frequency should reduce the frequency MI as per (14), lower 
frequency vibration tends to produce higher stress potentially 
yielding greater velocity deviation Δc/c଴  especially for 
materials with lower sound speeds. Based on these 
considerations and the above estimate we can expect 
appreciable and detectable FM level in typical VAM tests. 

III. CONCLUSION 

The VAM method detects and monitors damage evolution 
from micro-defects to macro-cracks. There are numerous 
studies of VAM application to a variety of materials (metals, 
composites, ceramics, glass, etc.) and a variety of defects 
(fatigue damage, stress-corrosion cracks, delamination) [1]-[7]. 
Most of these studies utilize spectrum analysis to measure the 
MI defined as a ratio of the amplitudes of the spectral sidebands 
(product of modulation in the presence of a defect) to the carrier 
amplitude [1]-[7]. It is a common belief that the defects produce 
predominantly Amplitude Modulation. Preceding research [6] 
experimentally demonstrated that fatigue damage preceding 
formation of large cracks may produce predominantly 
Frequency Modulation, while contact-type nonlinearities 
produce primarily Amplitude Modulation. 

The present work is an attempt to explain the Frequency 
Modulation by introducing two models: LDR and 
acoustoelastic FM model. Both models reveal the possibility of 
strong FM that could dominate over AM. 
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