Search results for: load balance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1803

Search results for: load balance

1623 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study

Authors: Ali Hamad, Ibrahim Al-Drous, Saleh Al-Jufout

Abstract:

This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified by maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14.35%. A graphical representation of the line-to-line voltages and the voltage drops at different load nodes is illustrated.

Keywords: FACTS, MATLAB, STATCOM, transmission line, voltage drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1622 Mechanical Equation of State in an Al-Li Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Existence of plastic equation of state has been investigated by performing a series of load relaxation tests at various temperatures using an Al-Li alloy. A plastic equation of state is first developed from a simple kinetics consideration for a mechanical activation process of a leading dislocation piled up against grain boundaries. A series of load relaxation test has been conducted at temperatures ranging from 200 to 530oC to obtain the stress-strain rate curves. A plastic equation of state has been derived from a simple consideration of dislocation kinetics and confirmed by experimental results.

Keywords: Plastic equation of state, Dislocation kinetics, Load relaxation test, Al-Li alloy, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1621 An Ergonomic Evaluation of Three Load Carriage Systems for Reducing Muscle Activity of Trunk and Lower Extremities during Giant Puppet Performing Tasks

Authors: Cathy SW. Chow, Kristina Shin, Faming Wang, B. C. L. So

Abstract:

During some dynamic giant puppet performances, an ergonomically designed load carrier system is necessary for the puppeteers to carry a giant puppet body’s heavy load with minimum muscle stress. A load carrier (i.e. prototype) was designed with two small wheels on the foot; and a hybrid spring device on the knee in order to assist the sliding and knee bending movements respectively. Thus, the purpose of this study was to evaluate the effect of three load carriers including two other commercially available load mounting systems, Tepex and SuitX, and the prototype. Ten male participants were recruited for the experiment. Surface electromyography (sEMG) was used to collect the participants’ muscle activities during forward moving and bouncing and with and without load of 11.1 kg that was 60 cm above the shoulder. Five bilateral muscles including the lumbar erector spinae (LES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), and gastrocnemius (GM) were selected for data collection. During forward moving task, the sEMG data showed smallest muscle activities by Tepex harness which exhibited consistently the lowest, compared with the prototype and SuitX which were significantly higher on left LES 68.99% and 64.99%, right LES 26.57% and 82.45%; left RF 87.71% and 47.61%, right RF 143.57% and 24.28%; left BF 80.21% and 22.23%, right BF 96.02% and 21.83%; right TA 6.32% and 4.47%; left GM 5.89% and 12.35% respectively. The result above reflected mobility was highly restricted by tested exoskeleton devices. On the other hand, the sEMG data from bouncing task showed the smallest muscle activities by prototype which exhibited consistently the lowest, compared with the Tepex harness and SuitX which were significantly lower on lLES 6.65% and 104.93, rLES 23.56% and 92.19%; lBF 33.21% and 93.26% and rBF 24.70% and 81.16%; lTA 46.51% and 191.02%; rTA 12.75% and 125.76%; IGM 31.54% and 68.36%; rGM 95.95% and 96.43% respectively.

Keywords: Exoskeleton, load carriage aid, giant puppet performers, electromyography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
1620 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.

Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412
1619 A Budget and Deadline Constrained Fault Tolerant Load Balanced Scheduling Algorithm for Computational Grids

Authors: P. Keerthika, P. Suresh

Abstract:

Grid is an environment with millions of resources which are dynamic and heterogeneous in nature. A computational grid is one in which the resources are computing nodes and is meant for applications that involves larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Resource allocation is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline and resource failure. This work attempts in designing a resource allocation algorithm which is cost-effective and also targets at load balancing, fault tolerance and user satisfaction by considering the above requirements. The proposed Budget Constrained Load Balancing Fault Tolerant algorithm with user satisfaction (BLBFT) reduces the schedule makespan, schedule cost and task failure rate and improves resource utilization. Evaluation of the proposed BLBFT algorithm is done using Gridsim toolkit and the results are compared with the algorithms which separately concentrates on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts.

Keywords: Grid Scheduling, Load Balancing, fault tolerance, makespan, cost, resource utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
1618 Dynamic Action Induced By Walking Pedestrian

Authors: J. Kala, V. Salajka, P. Hradil

Abstract:

The main focus of this paper is on the human induced forces. Almost all existing force models for this type of load (defined either in the time or frequency domain) are developed from the assumption of perfect periodicity of the force and are based on force measurements conducted on rigid (i.e. high frequency) surfaces. To verify the different authors conclusions the vertical pressure measurements invoked during the walking was performed, using pressure gauges in various configurations. The obtained forces are analyzed using Fourier transformation. This load is often decisive in the design of footbridges. Design criteria and load models proposed by widely used standards and other researchers were introduced and a comparison was made.

Keywords: Pedestrian action, Experimental analysis, Fourier series, serviceability, cycle loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
1617 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1616 Assessment of Influence of Short-Lasting Whole-Body Vibration on Joint Position Sense and Body Balance–A Randomised Masked Study

Authors: Anna Słupik, Anna Mosiołek, Sebastian Wójtowicz, Dariusz Białoszewski

Abstract:

Introduction: Whole-Body Vibration (WBV) uses high frequency mechanical stimuli generated by a vibration plate and transmitted through bone, muscle and connective tissues to the whole body. Research has shown that long-term vibration-plate training improves neuromuscular facilitation, especially in afferent neural pathways, responsible for the conduction of vibration and proprioceptive stimuli, muscle function, balance and proprioception. Some researchers suggest that the vibration stimulus briefly inhibits the conduction of afferent signals from proprioceptors and can interfere with the maintenance of body balance. The aim of this study was to evaluate the influence of a single set of exercises associated with whole-body vibration on the joint position sense and body balance. Material and methods: The study enrolled 55 people aged 19-24 years. These individuals were randomly divided into a test group (30 persons) and a control group (25 persons). Both groups performed the same set of exercises on a vibration plate. The following vibration parameters: frequency of 20Hz and amplitude of 3mm, were used in the test group. The control group performed exercises on the vibration plate while it was off. All participants were instructed to perform six dynamic exercises lasting 30 seconds each with a 60-second period of rest between them. The exercises involved large muscle groups of the trunk, pelvis and lower limbs. Measurements were carried out before and immediately after exercise. Joint position sense (JPS) was measured in the knee joint for the starting position at 45° in an open kinematic chain. JPS error was measured using a digital inclinometer. Balance was assessed in a standing position with both feet on the ground with the eyes open and closed (each test lasting 30 sec). Balance was assessed using Matscan with FootMat 7.0 SAM software. The surface of the ellipse of confidence and front-back as well as right-left swing were measured to assess balance. Statistical analysis was performed using Statistica 10.0 PL software. Results: There were no significant differences between the groups, both before and after the exercise (p> 0.05). JPS did not change in both the test (10.7° vs. 8.4°) and control groups (9.0° vs. 8.4°). No significant differences were shown in any of the test parameters during balance tests with the eyes open or closed in both the test and control groups (p> 0.05). Conclusions: 1. Deterioration in proprioception or balance was not observed immediately after the vibration stimulus. This suggests that vibrationinduced blockage of proprioceptive stimuli conduction can have only a short-lasting effect that occurs only as long as a vibration stimulus is present. 2. Short-term use of vibration in treatment does not impair proprioception and seems to be safe for patients with proprioceptive impairment. 3. These results need to be supplemented with an assessment of proprioception during the application of vibration stimuli. Additionally, the impact of vibration parameters used in the exercises should be evaluated.

Keywords: Balance, joint position sense, proprioception, whole body vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1615 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: Renewable energies, hybrid systems, optimization, operation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
1614 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1613 Load Balancing in Heterogeneous P2P Systems using Mobile Agents

Authors: Neeraj Nehra, R. B. Patel, V. K. Bhat

Abstract:

Use of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile agent technology has proliferated at an equally rapid rate. In this scenario load balancing becomes important for P2P systems. Beside P2P systems can be highly heterogeneous, i.e., they may consists of peers that range from old desktops to powerful servers connected to internet through high-bandwidth lines. There are various loads balancing policies came into picture. Primitive one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive choice; however the communication requirements are sometimes inefficient when implementing the primitives provided by MPI. In this scenario we use the concept of mobile agent because Mobile agent (MA) based approach have the merits of high flexibility, efficiency, low network traffic, less communication latency as well as highly asynchronous. In this study we present decentralized load balancing scheme using mobile agent technology in which when a node is overloaded, task migrates to less utilized nodes so as to share the workload. However, the decision of which nodes receive migrating task is made in real-time by defining certain load balancing policies. These policies are executed on PMADE (A Platform for Mobile Agent Distribution and Execution) in decentralized manner using JuxtaNet and various load balancing metrics are discussed.

Keywords: Mobile Agents, Agent host, Agent Submitter, PMADE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1612 Developing the Personal, Dissolving the Political

Authors: James Moir

Abstract:

The emergence of person-centred discourse based around notions of 'personal development planning- and 'work'life balance' has taken hold in education and the workplace in recent years. This paper examines this discourse with regard to recent developments in higher education as well as the inter-related issue of work-life balance in occupational careers. In both cases there have been national and trans-national policy initiatives directed towards improving both personal opportunities and competitive advantage in a global knowledge-based economy. However, despite an increasing concern with looking outward at this globalised educational and employment marketplace, there is something of a paradox in encouraging people to look inward at themselves in order to become more self-determined. This apparent paradox is considered from a discourse analytic perspective in terms of the ideological effects of an increasing concern with the personal world. Specifically, it is argued that there are tensions that emerge from a concern with an innerdirected process of self-reflection that dissolve any engagement with wider political issues that impact upon educational and career development.

Keywords: Personal development planning, higher education, work-life balance, career.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
1611 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0^o/+45^o/-45^o/0^o] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP Composite Cylindrical Shell, Asymmetric Meshing Technique, Primary Buckling, Secondary Buckling, Linear Eigenvalue Analysis, Non-linear Riks Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
1610 Analytical Based Truncation Principle of Higher-Order Solution for a x1/3 Force Nonlinear Oscillator

Authors: Md. Alal Hosen

Abstract:

In this paper, a modified harmonic balance method based an analytical technique has been developed to determine higher-order approximate periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to x1/3. Usually, a set of nonlinear algebraic equations is solved in this method. However, analytical solutions of these algebraic equations are not always possible, especially in the case of a large oscillation. In this article, different parameters of the same nonlinear problems are found, for which the power series produces desired results even for the large oscillation. We find a modified harmonic balance method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Besides these, a suitable truncation formula is found in which the solution measures better results than existing solutions. The method is mainly illustrated by the x1/3 force nonlinear oscillator but it is also useful for many other nonlinear problems.

Keywords: Approximate solutions, Harmonic balance method, Nonlinear oscillator, Perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1609 Routing Load Analysis over 802.11 DCF of Reactive Routing Protocols DSR and DYMO

Authors: Parma Nand, S.C. Sharma

Abstract:

The Mobile Ad-hoc Network (MANET) is a collection of self-configuring and rapidly deployed mobile nodes (routers) without any central infrastructure. Routing is one of the potential issues. Many routing protocols are reported but it is difficult to decide which one is best in all scenarios. In this paper on demand routing protocols DSR and DYMO based on IEEE 802.11 DCF MAC protocol are examined and characteristic summary of these routing protocols is presented. Their performance is analyzed and compared on performance measuring metrics throughput, dropped packets due to non availability of routes, duplicate RREQ generated for route discovery and normalized routing load by varying CBR data traffic load using QualNet 5.0.2 network simulator.

Keywords: Adhoc networks, wireless networks, CBR, routingprotocols, route discovery, simulation, performance evaluation, MAC, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
1608 Role of GIS in Distribution Power Systems

Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam

Abstract:

With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.

Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5456
1607 A Simplified Model for Mechanical Loads under Angular Misalignment and Unbalance

Authors: Úrsula B. Ferraz, Paulo F. Seixas, Webber E. Aguiar

Abstract:

This paper presents a dynamic model for mechanical loads of an electric drive, including angular misalignment and including load unbalance. The misalignment model represents the effects of the universal joint between the motor and the mechanical load. Simulation results are presented for an induction motor driving a mechanical load with angular misalignment for both flexible and rigid coupling. The models presented are very useful in the study of mechanical fault detection in induction motors, using mechanical and electrical signals already available in a drive system, such as speed, torque and stator currents.

Keywords: Angular misalignment, fault modeling, unbalance, universal joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
1606 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.

Keywords: Ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
1605 A P2P File Sharing Technique by Indexed-Priority Metric

Authors: Toshinori Takabatake, Yoshikazu Komano

Abstract:

Recently, the improvements in processing performance of a computer and in high speed communication of an optical fiber have been achieved, so that the amount of data which are processed by a computer and flowed on a network has been increasing greatly. However, in a client-server system, since the server receives and processes the amount of data from the clients through the network, a load on the server is increasing. Thus, there are needed to introduce a server with high processing ability and to have a line with high bandwidth. In this paper, concerning to P2P networks to resolve the load on a specific server, a criterion called an Indexed-Priority Metric is proposed and its performance is evaluated. The proposed metric is to allocate some files to each node. As a result, the load on a specific server can distribute them to each node equally well. A P2P file sharing system using the proposed metric is implemented. Simulation results show that the proposed metric can make it distribute files on the specific server.

Keywords: peer-to-peer, file-sharing system, load-balancing, dependability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
1604 Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat

Authors: Saurabh Chanana, Monika Arora

Abstract:

Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand. 

Keywords: Demand response, Home energy management Programmable communicating thermostat, Thermostatically controlled appliances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984
1603 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: Spring, mass, damper, impact, knee joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
1602 Clustering Based Formulation for Short Term Load Forecasting

Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha

Abstract:

A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.

Keywords: Load forecasting, clustering, fuzzy inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
1601 On The Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study

Authors: Rami A. Maher, Ibraheem K. Ibraheem

Abstract:

This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.

Keywords: Robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
1600 Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Authors: Adeniyi G. Adeogun, Bolaji F. Sule, Adebayo W. Salami, Michael O. Daramola

Abstract:

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period between 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Keywords: GIS, Modeling, Sensitivity Analysis, SWAT, Water Yield, Watershed level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4992
1599 Control Technology for a Daily Load-following Operation in a Nuclear Power Plant

Authors: Keuk Jong Yu, Sang Hee Kang, Sung Chang You

Abstract:

In Korea, the technology of a load fo nuclear power plant has been being developed. automatic controller which is able to control temperature and axial power distribution was developed. identification algorithm and a model predictive contact former transforms the nuclear reactor status into numerically. And the latter uses them and ge manipulated values such as two kinds of control ro this automatic controller, the performance of a coperation was evaluated. As a result, the automatic generated model parameters of a nuclear react to nuclear reactor average temperature and axial power the desired targets during a daily load follow.

Keywords: axial power distribution, model reactor temperature, system identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1598 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1597 Exergy Based Performance Analysis of a Gas Turbine Unit at Various Ambient Conditions

Authors: Idris A. Elfeituri

Abstract:

This paper studies the effect of ambient conditions on the performance of a 285 MW gas turbine unit using the exergy concept. Based on the available exergy balance models developed, a computer program has been constructed to investigate the performance of the power plant under varying ambient temperature and relative humidity conditions. The variations of ambient temperature range from zero to 50 ºC and the relative humidity ranges from zero to 100%, while the unit load kept constant at 100% of the design load. The exergy destruction ratio and exergy efficiency are determined for each component and for the entire plant. The results show a moderate increase in the total exergy destruction ratio of the plant from 62.05% to 65.20%, while the overall exergy efficiency decrease from 38.2% to 34.8% as the ambient temperature increases from zero to 50 ºC at all relative humidity values. Furthermore, an increase of 1 ºC in ambient temperature leads to 0.063% increase in the total exergy destruction ratio and 0.07% decrease in the overall exergy efficiency. The relative humidity has a remarkable influence at higher ambient temperature values on the exergy destruction ratio of combustion chamber and on exergy loss ratio of the exhaust gas but almost no effect on the total exergy destruction ratio and overall exergy efficiency. At 50 ºC ambient temperature, the exergy destruction ratio of the combustion chamber increases from 30% to 52% while the exergy loss ratio of the exhaust gas decreases from 28% to 8% as the relative humidity increases from zero to 100%. In addition, exergy analysis reveals that the combustion chamber and exhaust gas are the main source of irreversibility in the gas turbine unit. It is also identified that the exergy efficiency and exergy destruction ratio are considerably dependent on the variations in the ambient air temperature and relative humidity. Therefore, the incorporation of the existing gas turbine plant with inlet air cooling and humidifier technologies should be considered seriously.

Keywords: Destruction, exergy, gas turbine, irreversibility, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
1596 Designing the Concrete-Framework Building and Examining its Behavior under the Explosion Load

Authors: Mehran Pourgholi , Amin Lotfi Eghlim

Abstract:

These Nowadays the explosion of bombs or explosive materials such as gas and oil near or inside the buildings cause some losses in installations and building components. This has made the engineers to make the buildings and their components resistance against the effects of explosion. These activities lead to provide regulations and different methods. The above regulations are mostly focused on the explosion effects resulting from the vehicles around the buildings. Therefore, the explosion resulting from the vehicles outside the buildings will be studied in this research. In the present study, the main goals are to investigate the explosion load effects on the structures located on the piles with the specific quantity of plasticity and observing the permissible response of these structures. The concentrated mass system and the spring with two degree of freedom will be used to study the structural system.

Keywords: Concrete-Framework Building, Explosion Load, piles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
1595 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter

Authors: B. Kędra, R. Małkowski

Abstract:

This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.

Keywords: Power converter, Simulink real-time, MATLAB, load, tap controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
1594 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns

Authors: T. Yilmaz, N. Kirac

Abstract:

Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.

Keywords: Lateral-torsional buckling, stability, beam-column, monosymmetric section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740