
  
Abstract—In this paper, a modified harmonic balance method 

based an analytical technique has been developed to determine 
higher-order approximate periodic solutions of a conservative 
nonlinear oscillator for which the elastic force term is proportional to 
x1/3. Usually, a set of nonlinear algebraic equations is solved in this 
method. However, analytical solutions of these algebraic equations 
are not always possible, especially in the case of a large oscillation. 
In this article, different parameters of the same nonlinear problems 
are found, for which the power series produces desired results even 
for the large oscillation. We find a modified harmonic balance 
method works very well for the whole range of initial amplitudes, and 
the excellent agreement of the approximate frequencies and periodic 
solutions with the exact ones has been demonstrated and discussed. 
Besides these, a suitable truncation formula is found in which the 
solution measures better results than existing solutions. The method 
is mainly illustrated by the x1/3 force nonlinear oscillator but it is also 
useful for many other nonlinear problems. 

 
Keywords—Approximate solutions, Harmonic balance method, 

Nonlinear oscillator, Perturbation.  

I. INTRODUCTION 
ANY complex real world problems in nature are due to 
nonlinear phenomena. Nonlinear processes are one of 

the biggest challenges and not easy to control because the 
nonlinear characteristic of the system abruptly changes due to 
some small changes of valid parameters including time. Thus 
the issue becomes more complicated and hence needs ultimate 
solution. Therefore, the studies of approximate solutions of 
nonlinear differential equations (N.D.Es.) play a crucial role to 
understand the internal mechanism of nonlinear phenomena. 
Advance nonlinear techniques are significant to solve inherent 
nonlinear problems, particularly those involving differential 
equations, dynamical systems and related areas. In recent 
years, both the mathematicians and physicists have made 
significant improvement in finding a new mathematical tool 
would be related to nonlinear differential equations and 
dynamical systems whose understanding will rely not only on 
analytic techniques but also on numerical and asymptotic 
methods. They establish many effective and powerful methods 
to handle the N.D.Es. 

The study of given nonlinear problems is of crucial 
importance not only in all areas of physics but also in 
engineering and other disciplines, since most phenomena in 
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our world are essential nonlinear and are described by 
nonlinear equations.  

It is very difficult to solve nonlinear problems and in 
general it is often more difficult to get an analytic 
approximation than a numerical one for a given nonlinear 
problem. There are many analytical approaches to solve 
nonlinear differential equations. One of the widely used 
techniques is perturbation [1]-[4], whereby the solution is 
expanded in powers of a small parameter. However, for the 
nonlinear conservative systems, generalizations of some of the 
standard perturbation techniques overcome this limitation. In 
particular, generalization of Lindsted-Poincare method and 
He’s homotopy perturbation method yield desired results for 
strongly nonlinear oscillators [5]-[12]. 

The harmonic balance method (HBM) [13]-[23] is another 
technique for solving strongly nonlinear systems. Usually, a 
set of difficult nonlinear algebraic equations appears when 
HBM is formulated. In article [23], such nonlinear algebraic 
equations are solved in powers of a small parameter. 
Sometimes, higher approximations also fail to measure the 
desired results when 10 >>a . In this article this limitation is 
removed. Approximate solutions of the same equations are 
found in which the nonlinear algebraic equations are solved by 
a new parameter. The higher order approximations (mainly 
third approximation) have been obtained for mentioned 
nonlinear oscillator. However, a suitable truncation of these 
algebraic equations takes the solution very close to the 
previous one but it saves a lot of calculation. This is the main 
advantage of the method presented in this article. 

II. THE METHOD 
Let us consider a nonlinear differential equation 
 

]0)0(,)0([),,( 0
2
0 ==ε−=ω+ xaxxxfxx                     (1) 

 
where ),( xxf  is a nonlinear function such that 

),(),( xxfxxf −=−− , 00 ≥ω  and ε  is a constant. 
A periodic solution of (1) is taken in the form as  
 

0 ( cos( ) cos(3 ) cos(5 ) cos(7 ) )x a t u t v t w tρ ω ω ω ω= + + + +  (2) 
 
where 0a , ρ  and ϕ  are constants. If −−−=ρ vu1  and 

the initial phase 00 =ϕ , solution (2) readily satisfies the 
initial conditions ]0)0(,)0([ 0 == xax . 
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Substituting (2) into (1) and expanding ),( xxf  in a Fourier 
series, it is easily takes to an algebraic identity 

 

])3cos(),,()cos(),,([
])3cos()9()cos()([

0301

22
0

22
00

++−=
+−+−
tuaFtuaF

tuta
ωωε

ωωωωωωρ           (3) 

 
By comparing the coefficients of equal harmonics of (3), 

the following nonlinear algebraic equations are found 
 

,)25(

,)9(,)(

5
22

0

3
22

01
22

0

Fv

FuF

εωω

εωωεωωρ

−=−

−=−−=−                 (4) 

 
With help of the first equation, ϕ  is eliminated from all the 

rest of (4). Thus (4) takes the following form 
 

),25(24

),9(8,

15
2
0

13
2
01

2
0

2

FvFv

FuFuF

−=

−=+=

ρερω

ρερωερωρω             (5) 

 
Substitution −−−=ρ vu1 , and simplification, second-, 

third- equations of (5) take the following form 
 

,),,,,,,,(
),,,,,,,(

0002

0001

λεω
λεω

vuaGv
vuaGu

=
=                                        (6) 

 
where ,, 21 GG  exclude respectively the linear terms of 

,, vu . 

Whatever the values of 0ω  and 0a , there exists a 
parameter 1),,( 000 <<εωλ a , such that ,, vu  are expandable in 
following series 

 

,

,
2
0201

2
0201

++=

++=

λλ

λλ

VVv

UUu                                         (7) 

 
where ,,,,, 2121 VVUU  are constants. 

Finally, substituting the values of ,, vu  from (7) into the 
first equation of (5), ω  is determined. This completes the 
determination of all related functions for the proposed periodic 
solution as given in (2). 

III. EXAMPLE 
Let us consider the following nonlinear oscillator which 

was first studied in detail by Mickens [18] 
 

03/1 =+ xx                                                                              (8) 
 
This is a conservative system and the solution of (8) is 

periodic. The classical harmonic balance method [23] cannot 
be applied directly. From (2) the first-order approximation 
solution of (8) is 

 
)cos(0 tax ω=                                            (9) 

where the second term of (8) ..ei 3/1x  can be expanded in a 
Fourier series as  
 

1/3 1/3
2 1 1 3

0
cos( ) cos(3 )n

n
x b x b t b tω ω

∞

+
=

= = + +∑                (10) 

 
Herein ,, 31 bb  are evaluated by the relation  
 

∫ +=+

2/

0

3/1
12 ])12cos[(4 π

ϕϕ
π

dnxb n
                                     (11)         

 
where tωϕ = . From (11) and using (9) we obtained 1b , ,3b ,   
 

,3 0
3/1

0
1 π

Iab =                                       (12) 

π5
3 0

3/1
0

3
Iab −= , where 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

=

3
2
6
7

0

Gamma

Gamma
I

                       (13) 

 
and so on.  

Now substituting (9) and (10) along with (12)-(13) into (8) 
and setting the coefficient of ϕcos  the following algebraic 
equation is obtained  

 

03 0
3/1

02
0 =+−

π
ω Iaa                                               (14) 

 
Solving (14) the first-order approximate frequency is  
 

3/1
00

0
3/1

0 07685.13
aa

Ia
==

π
ω                                                (15) 

 
Therefore the first-order approximation solution of (8) is (9) 
..ei  )cos(0 tax ω=  where ω  is given by (15). 

Let us consider a second-order approximation solution, ..ei  
   

))cos()3(cos()cos( 00 ttuatax ωωω −+=               (16) 
 
Substituting (16) along with using (10)-(11) into (8) and 

then equating the coefficients of )cos( tω  and )3cos( tω , 
the following equations are  

 
1/3 2 3 4

2 0 0
0

3 ( 110 44 33 50 100 )(1 ) 0
110

a u u u u Iu a ω
π

− + + + +
− − − = (17) 

 
1/3 2 3 4

2 0 0
0

3 ( 374 935 969 1700 3700 )9 0
1870

a u u u u Iu a ω
π

− + + + +
− + = (18) 

 
where 0I  is defined as (13) and ,, 31 bb  are evaluated as 
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1/3 2 3 4
0 0

1
3 ( 110 44 33 50 100 )

110
a u u u u Ib

π
− + + + +

= −         (19) 

 
1/3 2 3 4
0 0

3
3 ( 374 935 969 1700 3700 )

1870
a u u u u Ib

π
− + + + +

=     (20) 

 
and so on. 

After simplification, (17) takes the form 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
++++−

−=
π

ω
)1(110

)100503344110(3

0

0
4323/1

02

ua
Iuuuua   (21) 

 

By elimination of 2ω  from (18) with the help of (21) and 
simplification, the following nonlinear algebraic equation of 
u  is obtained as 

 
2 3 4 5

0
199 170 4825 58001

11 11 187 187
u u u uu λ

⎛ ⎞
= − + + + +⎜ ⎟

⎝ ⎠
 

 
where 

83
2

0 =λ                                           (22) 

The power series solution of (22) in terms of 0λ  is 
 

3 4 5 6
0 0 0 0

0
199 170 1293359 2811750

11 11 2057 2057
u λ λ λ λλ= − + − − + +   (23) 

 
Now substituting the value of u  from (23) into (21), the 

second-order approximate frequency is  
 

1/3 2 3 4
0 0

1/3
00

3 ( 110 44 33 50 100 ) 1.069204
110 (1 )

a u u u u I
aa u

ω
π

⎛ ⎞− + + + +
= − =⎜ ⎟⎜ ⎟−⎝ ⎠

        

(24) 
 
Thus the second-order approximation solution of (8) is  

))cos()3(cos()cos( 00 ttuatax ωωω −+=  where u  and 
ω  are respectively given by (23) and (24). 

It is observed that solution (16) measures better result when 
(17)-(18) is truncated as 

 
1/3 2

2 0 0
0

3 ( 110 44 33 / 2)(1 ) 0
110

a u u Iu a ω
π

− + +
− − − =                  (25) 

 
And 
 

1/3 2
2 0 0

0
3 ( 374 935 969 / 2)9 0

1870
a u u Iua ω

π
− + +

− + =                 (26) 

 
Seeing that (25)-(26), it is clear that the higher order terms 

of u  (more than second) are ignored; but half of the second 
order terms are considered. Now from (25) we can easily 
obtain  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
++−

−=
π

ω
)1(110

)2/3344110(3

0

0
23/1

02

ua
Iuua                                 (27) 

 
Substituting (22) into (26) and then simplifying we get 
 

2 3

0
739 601

44 11
u uu λ

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
                                      (28) 

 
where 0λ is defined as (22). The power series solution of (28) 
is 
 

3 4 5 5
0 0 0 0 0

739 60 546121 55425
44 11 968 121

u λ λ λ λ λ= − + − − + +         (29) 

 
Substituting the value of u  from (29) into (27) the second-

order frequency in truncation form is  
 

1/3 2
0 0

2 1/3
00

3 ( 110 44 33 / 2) 1.069242
110 (1 )trun

a u u I
aa u

ω
π

⎛ ⎞− + +
= − =⎜ ⎟⎜ ⎟−⎝ ⎠

     (30) 

 
In a similar way, the method can be used to determine 

higher order approximations. In this article, a third-order 
approximate solution of (8) is  

 

0 0 0cos( ) (cos(3 ) cos( )) (cos(5 ) cos( ))x a t a u t t a v t tω ω ω ω ω= + − + − (31) 
 
Substituting (31) together with (10) and (11) into (8) and 

equating the coefficients of ϕcos , ϕ3cos and ϕ5cos  the 
related functions are obtained from the following  equations  

  
1/3 2 3
0

2
2 0

0

3 ( 110 44 33 50

33 18 27 )(1 ) 0
110

a u u u

v uv v Iu v a ω
π

− + + +

+ + +
− − − − =       (32) 

 
1/3 2 3
0

2 0
0

3 (374 935 969 1700
102 306 )9 0

1870

a u u u
v uv Iu a ω

π

− − −

+ + +
− − =               (33) 

 

0
43010

)30222
1876829900

1290363474301(3

25 0

3

23/1
0

2
0 =

++
+−

−−

+−
π

ω
Iuv

vu

uua

av                (34) 

where 0I  is defined as (13). 
Using (32) we can easily written as  
 

1/3 2 3 2
2 0 0

0

3 ( 110 44 33 50 33 18 27 )
110 (1 )

a u u u v uv v I
a u v

ω
π

⎛ ⎞− + + + + + +
= −⎜ ⎟⎜ ⎟− −⎝ ⎠

(35) 
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By eliminating 2ω  from (33) and (34) with the help of (35) 
and simplification, the following nonlinear algebraic equations 
of  u  and v  are obtained 

   
2 3 4 2

0
199 170 175 8 115 7411

11 11 11 11 11 374
u u u v uv u vu λ

⎛ ⎞
= − + + + + + + +⎜ ⎟

⎝ ⎠
                              

(36) 
 

2 3 4 2

0
28 16 739 1300 19487 165121
11 11 187 187 187 187

u u u u uv u vv μ
⎛ ⎞

= − − − + + + +⎜ ⎟
⎝ ⎠

                          

(37) 
 
where 0λ is defined as (22) and 

2713
11

0 =μ . 

The algebraic relation between 0λ  and 0μ  is  
 

5426
913 0

0
λμ =                           (38) 

 
Therefore, (37) takes the form 
 

2 3 4 2
0913 28 16 739 1300 19487 165121

5426 11 11 187 187 187 187
u u u u uv u vv λ ⎛ ⎞

= − − − + + + +⎜ ⎟
⎝ ⎠

                         (39) 
 
The power series solutions of (36) and (39) are obtained in 

terms of 0λ   
 

,273375.527067224.26
677576.16122373.0

5
0

4
0

3
0

2
00

+−−

++−=

λλ

λλλu                       (40) 

.788176.112462411.9

910391.2428308.0168263.0
5
0

4
0

3
0

2
00

++−

−+=

λλ

λλλv
                 (41) 

 
Now substituting the values of u  and v  from (40)-(41) 

into (35), the third-order approximate frequency is 
 

1/3 2 3
0

2
0

1/3
00

3 ( 110 44 33 50 33

18 27 ) 1.070779
110 (1 )

a u u u v

uv v I
aa u v

ω
π

⎛ ⎞− + + + +
⎜ ⎟

+ +⎜ ⎟= − =⎜ ⎟− −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (42) 

 
Therefore a third-order approximation periodic solution of 

(8) is defined as (31) where u , v  and ω  are respectively 
given by (40)-(42). 

The third approximate solution (30) measures almost 
similar result when (32)-(34) are truncated as 

 

0
110

)2/18332/50

3344110(3

)1( 0
3

23/1
0

2
0 =

+++

++−

−−−−
π

ω
Iuvvu

uua

avu (43) 

 

0
1870

)2/306102
2/1700969935374(3

9 0

323/1
0

2
0 =

+++
−−−

−−
π

ω
Iuvv

uuua

au       (44) 

 

 0
43010

)2/30222
187682/29900

1290363474301(3

25 0

3

23/1
0

2
0 =

++
+−

−−

+−
π

ω
Iuv

vu

uua

va      (45) 

 
Here, using (43) it can be written as  
 

1/3 2 3
2 0 0

0

3 ( 110 44 33 50 / 2 33 18 / 2)
110 (1 )

a u u u v uv I
a u

ω
π

⎛ ⎞− + + + + +
= −⎜ ⎟⎜ ⎟−⎝ ⎠

(46) 

 

By eliminating 2ω  from (44)-(45) with the help of (46) and 
simplification, the following nonlinear algebraic equations of  
u  and v  are obtained   

 
2 3 4 2

0
199 145 175 8 239 31

11 11 22 11 22 2
u u u v uv u vu λ

⎛ ⎞
= − + + + + + + +⎜ ⎟

⎝ ⎠
        (47) 

 
2 3 4 2

0
28 16 89 650 18830 139291
11 11 187 187 187 187

u u u u uv u vv μ
⎛ ⎞

= − − − + + + +⎜ ⎟
⎝ ⎠

                  

(48) 
 
where 0λ  and 0μ  are defined as (22) and (37). 

In similar way, the power series solutions of (47)-(48) in 
terms of 0λ are  

 
2 3

0 0 0
4 5
0 0

0.122373 16.582169

23.803493 532.152105

u λ λ λ

λ λ

= − + +

− − +
                     (49) 

 
2 3

0 0 0
4 5
0 0

0.168263 0.428308 2.811605

10.129025 108.343497

v λ λ λ

λ λ

= + −

− + +
                   (50) 

 
Substituting the values of u  and v  from (49)-(50) into 

(46), and simplifying we get the third-order approximate 
frequency in truncated form is  

 
1/3 2
0

3
0

3 1/3
00

3 ( 110 44 33

50 / 2 33 18 / 2) 1.070776
110 (1 )trun

a u u

u v uv I
aa u

ω
π

⎛ ⎞− + +
⎜ ⎟

+ + +⎜ ⎟= − =⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

  (51) 

 
Therefore a third-order approximation periodic solution of 

(8) is defined as (31) where u , v  and ω  are respectively 
given by (49)-(51).  
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IV. RESULTS AND DISCUSSIONS 
We illustrate the accuracy of a modified harmonic balance 

method by comparing the approximate solutions previously 
obtained with the exact frequency exω . In particular, we will 
consider the solution of (8) using the classical harmonic 
balance method [25]. This method is a procedure for the 
determining analytical approximations to the periodic 
solutions of the differential equations using a truncated 
Fourier series representation [22]. Like, the homotopy 
purterbation method, the harmonic balance method can be 
applied to nonlinear oscillatory problems where a linear terms 
does not exist, the nonlinear terms are not small, and there is 
no perturbation parameter. For this nonlinear problem, the 
exact value [24] of the frequency is  

 

3/1
0

0
070451.1)(
a

aex =ω                          (52) 

 
The first, second and third-order approximate frequencies 

and their Relatives Errors .).( ER  or percentage errors 
obtained in this article by applying a modified harmonic 
balance technique to mentioned conservative nonlinear 
oscillator are the following 

 

3/1
0

01
07685.1)(
a

a =ω ,  %59.0.. =ER                        (53) 

 

3/1
0

02
069204.1)(
a

atrun =ω ,          %11.0.. =ER                        (54) 

 

3/1
0

03
070779.1)(
a

atrun =ω ,          %03.0.. =ER                        (55) 

 
where ..ER  were calculated by using the following equation 
 

3,2,1
)(

)()(
100..

0

00 =
−

×= i
a

aa
ER

e

ei

ω
ωω                         (56) 

 
In [25] approximately solved (8) using a classical harmonic 

balance method. They determined the following results for the 
first and second-order approximate angular frequencies in 
orders  

 

3/1
0

01
049115.1)(
a

a =ω ,   %00.2.. =ER                        (57) 

 

3/1
0

02
063410.1)(
a

a =ω ,  %7.0.. =ER                        (58) 

 
Also in [21] approximately solved (8) using another 

improved harmonic balance method that incorporates salient 
feathers of both Newton’s method and the harmonic balance 
method. They calculated the following results for the first, 
second and third-order approximate angular frequencies in 

orders  
 

3/1
0

01
07685.1)(
a

a =ω ,  %6.0.. =ER                        (59) 

 

3/1
0

02
06922.1)(
a

a =ω ,  %12.0.. =ER                        (60) 

 

3/1
0

03
07078.1)(
a

a =ω ,  %031.0.. =ER                       (61) 

 
In [10] also approximately solved (8) using modified He’s 

homotopy perturbation method. They achieved the following 
results for the first, second and third-order approximate 
angular frequencies are as follows  

 

3/1
0

01
07685.1)(
a

a =ω ,  %6.0.. =ER                        (62) 

 

3/1
0

02
06861.1)(
a

a =ω ,  %17.0.. =ER                        (63) 

 

3/1
0

03
07019.1)(
a

a =ω ,                %24.0.. =ER                        (64) 

 
Comparing all the approximate frequencies the accuracy of 

the result obtained in this paper is better than those obtained 
previously by [25] and [10] and is almost similar those 
obtained by [21]. It has been mentioned that the procedure of 
[21] and [10] is laborious especially for obtaining the higher 
approximations.  

V. CONCLUSION 
Based on a modified harmonic balance method, an 

analytical technique has been presented to determine 
approximate periodic solutions of conservative nonlinear 
oscillator. In compared with the previously published 
methods, determination of solutions is straightforward and 
simple. The approximate angular frequency presented in this 
article using third-order approximate principle with relative 
error is %03.0 . The advantages of this method include its 
analytical simplicity and computational efficiency, and the 
ability to objectively better agreement in third-order 
approximate solution. To sum up, we can say that the method 
presented in this article for solving nonlinear oscillator can be 
considered as an efficient alternative of the previously 
proposed methods.  
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