WASET
	%0 Journal Article
	%A Anna Słupik and  Anna Mosiołek and  Sebastian Wójtowicz and  Dariusz Białoszewski
	%D 2015
	%J International Journal of Sport and Health Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 103, 2015
	%T Assessment of Influence of Short-Lasting Whole-Body Vibration on Joint Position Sense and Body Balance–A Randomised Masked Study
	%U https://publications.waset.org/pdf/10002910
	%V 103
	%X Introduction: Whole-Body Vibration (WBV) uses
high frequency mechanical stimuli generated by a vibration plate and
transmitted through bone, muscle and connective tissues to the whole
body. Research has shown that long-term vibration-plate training
improves neuromuscular facilitation, especially in afferent neural
pathways, responsible for the conduction of vibration and
proprioceptive stimuli, muscle function, balance and proprioception.
Some researchers suggest that the vibration stimulus briefly inhibits
the conduction of afferent signals from proprioceptors and can
interfere with the maintenance of body balance. The aim of this study
was to evaluate the influence of a single set of exercises associated
with whole-body vibration on the joint position sense and body
balance. Material and methods: The study enrolled 55 people aged
19-24 years. These individuals were randomly divided into a test
group (30 persons) and a control group (25 persons). Both groups
performed the same set of exercises on a vibration plate. The
following vibration parameters: frequency of 20Hz and amplitude of
3mm, were used in the test group. The control group performed
exercises on the vibration plate while it was off. All participants were
instructed to perform six dynamic exercises lasting 30 seconds each
with a 60-second period of rest between them. The exercises involved
large muscle groups of the trunk, pelvis and lower limbs.
Measurements were carried out before and immediately after
exercise. Joint position sense (JPS) was measured in the knee joint
for the starting position at 45° in an open kinematic chain. JPS error
was measured using a digital inclinometer. Balance was assessed in a
standing position with both feet on the ground with the eyes open and
closed (each test lasting 30 sec). Balance was assessed using Matscan
with FootMat 7.0 SAM software. The surface of the ellipse of
confidence and front-back as well as right-left swing were measured
to assess balance. Statistical analysis was performed using Statistica
10.0 PL software. Results: There were no significant differences
between the groups, both before and after the exercise (p> 0.05). JPS
did not change in both the test (10.7° vs. 8.4°) and control groups
(9.0° vs. 8.4°). No significant differences were shown in any of the
test parameters during balance tests with the eyes open or closed in
both the test and control groups (p> 0.05). Conclusions: 1.
Deterioration in proprioception or balance was not observed
immediately after the vibration stimulus. This suggests that vibrationinduced
blockage of proprioceptive stimuli conduction can have only
a short-lasting effect that occurs only as long as a vibration stimulus
is present. 2. Short-term use of vibration in treatment does not impair
proprioception and seems to be safe for patients with proprioceptive
impairment. 3. These results need to be supplemented with an
assessment of proprioception during the application of vibration
stimuli. Additionally, the impact of vibration parameters used in the
exercises should be evaluated.
	%P 593 - 596