Search results for: Electromagnetic Shielding.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 238

Search results for: Electromagnetic Shielding.

58 Computer Vision Applied to Flower, Fruit and Vegetable Processing

Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia

Abstract:

This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.

Keywords: Image processing, Vision system, Automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3322
57 Cardiopulmonary Exercise Testing in Young Asthmatic Children Ages 6-10 Years Old

Authors: Yen-Ting Wang, Kenny Wen-Chyuan Chen, I-Tsun Chiang, Lung-Ching Liang, Alex J.Y. Lee

Abstract:

The aim of this study was to establish the feasibility of a minute incremental exercise testing protocol in young asthma children. Twenty-two children with clinically diagnosed mild to moderate asthma volunteered to participate. The maximum incremental exercise test was performed using a cycle ergometer with an electromagnetic braking. A warm-up unloaded for 2 minutes then the workload was started at 40 watts for 2 minutes, and then stepwise increments of 8 watts per 2 minutes were applied. The pedaling frequency was set at 50 rpm. Ventilation and gas exchange were measured with a breath-by-breath automatic metabolic measurement system. Results showed that this test was well tolerated by all asthmatic children. Most of the children reached the VO2 plateau and satisfied the criteria for maximal respiratory exchange ratio of ≥ 1. This Study demonstrated that this testing protocol was suitable for young asthmatic children.

Keywords: Asthma, Child, Exercise, Pediatrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
56 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm- Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solution of classical Sturm–Liouville problem is presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
55 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization

Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal

Abstract:

This paper describes optimal thinning of an Elliptical  Cylindrical Array (ECA) of uniformly excited isotropic antennas  which can generate directive beam with minimum relative Side Lobe  Level (SLL). The Particle Swarm Optimization (PSO) method, which  represents a new approach for optimization problems in  electromagnetic, is used in the optimization process. The PSO is used  to determine the optimal set of ‘ON-OFF’ elements that provides a  radiation pattern with maximum SLL reduction. Optimization is done  without prefixing the value of First Null Beam Width (FNBW). The  variation of SLL with element spacing of thinned array is also  reported. Simulation results show that the number of array elements  can be reduced by more than 50% of the total number of elements in  the array with a simultaneous reduction in SLL to less than -27dB.

 

Keywords: Thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
54 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
53 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behavior of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Currentvoltage curves are particularly analyzed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: Electrostatic precipitator, current-voltage characteristics, Least Squares method, electric field, magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
52 Tri-Axis Receiver for Wireless Micro-Power Transmission

Authors: Nan-Chyuan Tsai, Sheng-Liang Hsu

Abstract:

An innovative tri-axes micro-power receiver is proposed. The tri-axes micro-power receiver consists of two sets 3-D micro-solenoids and one set planar micro-coils in which iron core is embedded. The three sets of micro-coils are designed to be orthogonal to each other. Therefore, no matter which direction the flux is present along, the magnetic energy can be harvested and transformed into electric power. Not only dead space of receiving power is mostly reduced, but also transformation efficiency of electromagnetic energy to electric power can be efficiently raised. By employing commercial software, Ansoft Maxwell, the preliminary simulation results verify that the proposed micro-power receiver can efficiently pick up the energy transmitted by magnetic power source. As to the fabrication process, the isotropic etching technique is employed to micro-machine the inverse-trapezoid fillister so that the copper wire can be successfully electroplated. The adhesion between micro-coils and fillister is much enhanced.

Keywords: Wireless Power Transmission, Magnetic Flux, Tri-axes Micro-power Receiver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
51 Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

Authors: Sui Xin, Li Chunsheng, Tian Di

Abstract:

Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

Keywords: Delay, SMS, reliability, distributed monitoringsystem (DMS), wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
50 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints

Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic

Abstract:

A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.

Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
49 GSM Based Automated Embedded System for Monitoring and Controlling of Smart Grid

Authors: Amit Sachan

Abstract:

The purpose of this paper is to acquire the remote electrical parameters like Voltage, Current, and Frequency from Smart grid and send these real time values over GSM network using GSM Modem/phone along with temperature at power station. This project is also designed to protect the electrical circuitry by operating an Electromagnetic Relay. The Relay can be used to operate a Circuit Breaker to switch off the main electrical supply. User can send commands in the form of SMS messages to read the remote electrical parameters. This system also can automatically send the real time electrical parameters periodically (based on time settings) in the form of SMS. This system also send SMS alerts whenever the Circuit Breaker trips or whenever the Voltage or Current exceeds the predefined limits.

Keywords: GSM Modem, Initialization of ADC module of microcontroller, PIC-C compiler for Embedded C programming, PIC kit 2 programmer for dumping code into Micro controller, Express SCH for Circuit design, Proteus for hardware simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9480
48 Optimal Analysis of Grounding System Design for Distribution Substation

Authors: T. Lantharthong, N. Rugthaicharoencheep, A. Phayomhom

Abstract:

This paper presents the electrical effect of two neighboring distribution substation during the construction phase. The size of auxiliary grounding grid have an effect on entire grounding system. The bigger the size of auxiliary grounding grid, the lower the GPR and maximum touch voltage, with the exception that when the two grids are unconnected, i.e. the bigger the size of auxiliary grounding grid, the higher the maximum step voltage. The results in this paper could be served as design guideline of grounding system, and perhaps remedy of some troublesome grounding grids in power distribution’s system. Modeling and simulation is carried out on the Current Distribution Electromagnetic interference Grounding and Soil structure (CDEGS) program. The simulation results exhibit the design and analysis of power system grounding and perhaps could be set as a standard in grounding system design and modification in distribution substations.

Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
47 CMOS-Compatible Silicon Nanoplasmonics for On-Chip Integration

Authors: Shiyang Zhu, Guo-Qiang Lo, Dim-Lee Kwong

Abstract:

Although silicon photonic devices provide a significantly larger bandwidth and dissipate a substantially less power than the electronic devices, they suffer from a large size due to the fundamental diffraction limit and the weak optical response of Si. A potential solution is to exploit Si plasmonics, which may not only miniaturize the photonic device far beyond the diffraction limit, but also enhance the optical response in Si due to the electromagnetic field confinement. In this paper, we discuss and summarize the recently developed metal-insulator-Si-insulator-metal nanoplasmonic waveguide as well as various passive and active plasmonic components based on this waveguide, including coupler, bend, power splitter, ring resonator, MZI, modulator, detector, etc. All these plasmonic components are CMOS compatible and could be integrated with electronic and conventional dielectric photonic devices on the same SOI chip. More potential plasmonic devices as well as plasmonic nanocircuits with complex functionalities are also addressed.

Keywords: Silicon nanoplasmonics, Silicon nanophotonics, Onchip integration, CMOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
46 Simulation and Validation of Spur Gear Heated by Induction using 3d Model

Authors: A. Chebak, N. Barka, A. Menou, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of hardness profile of spur gear heated by induction heating process in function of the machine parameters, such as the power (kW), the heating time (s) and the generator frequency (kHz). The global work is realized by 3D finite-element simulation applied to the process by coupling and resolving the electromagnetic field and the heat transfer problems, and it was performed in three distinguished steps. First, a Comsol 3D model was built using an adequate formulation and taking into account the material properties and the machine parameters. Second, the convergence study was conducted to optimize the mesh. Then, the surface temperatures and the case depths were deeply analyzed in function of the initial current density and the heating time in medium frequency (MF) and high frequency (HF) heating modes and the edge effect were studied. Finally, the simulations results are validated using experimental tests.

Keywords: Induction heating, simulation, experimental validation, 3D model, hardness profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
45 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topologically order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for exchange photon energy with molecules without changes in topology (i.e., chemical transformation into products do not propagate any changes or variation in the network topology of physical configuration). The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure, and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies, which are automated, real-time, reliable, reproducible and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody–antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, engineering topology, photonic system molecular structure, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
44 A High Accuracy Measurement Circuit for Soil Moisture Detection

Authors: Sheroz Khan, A. H. M. Zahirul Alam, Othman O. Khalifa, Mohd Rafiqul Islam, Zuraidah Zainudin, Muzna S. Khan, Nurul Iman Muhamad Pauzi

Abstract:

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

Keywords: Analog–digital Conversion, Bridge Circuits, Intelligent sensors, Pulse Time Modulation, Relaxation Oscillator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4023
43 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: Communication, LED, Li-Fi, Wi-Fi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
42 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW fed antenna, dual-band, electromagnetic simulation, wireless local area network, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
41 Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System

Authors: Jeong-Min Jo, Young-Jae Han, Chang-Young Lee

Abstract:

Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev

Keywords: Magnetic Levitation system, Maglev, Permanent Magnets, Hybrid Magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
40 Analysis of Target Location Estimation in High Performance Radar System

Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park

Abstract:

In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.

Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
39 Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism

Authors: Chathurika D. Abeyrathne, Malka N. Halgamuge, Peter M. Farrell

Abstract:

There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.

Keywords: Bio-effect, biological clock, magnetoreception, radical pair mechanism, weak magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
38 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: Computer-aided design, design optimization, torsional scanner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
37 Predicting Effective Permeability of Nanodielectric Composites Bonded by Soft Magnetic Nanoparticles

Authors: A. Thabet, M. Repetto

Abstract:

Dielectric materials play an important role in broad applications, such as electrical and electromagnetic applications. This research studied the prediction of effective permeability of composite and nanocomposite dielectric materials based on theoretical analysis to specify the effects of embedded magnetic inclusions in enhancing magnetic properties of dielectrics. Effective permeability of Plastics and Glass nanodielectrics have been predicted with adding various types and percentages of magnetic nano-particles (Fe, Ni-Cu, Ni-Fe, MgZn_Ferrite, NiZn_Ferrite) for formulating new nanodielectric magnetic industrial materials. Soft nanoparticles powders that have been used in new nanodielectrics often possess the structure of a particle size in the range of micrometer- to nano-sized grains and magnetic isotropy, e.g., a random distribution of magnetic easy axes of the nanograins. It has been succeeded for enhancing characteristics of new nanodielectric magnetic industrial materials. The results have shown a significant effect of inclusions distribution on the effective permeability of nanodielectric magnetic composites, and so, explained the effect of magnetic inclusions types and their concentration on the effective permeability of nanodielectric magnetic materials.

Keywords: Nanoparticles, Nanodielectrics, Nanocomposites, Effective Permeability, Magnetic Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
36 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: Absorbing, carbon, carbon nickel, frequency, thicknesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
35 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters

Authors: V. S. Klimash, Ye Min Thu

Abstract:

Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.

Keywords: Direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
34 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: Bistatic radar cross section, passive radar, propagation losses, radar coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
33 Off-Line Detection of “Pannon Wheat” Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aim of this investigation is to elaborate nearinfrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. These wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis [PCA], cluster analysis [CA]) and operation condition of milling technology. It is obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: Allied wheat fractions, CA, milling process, nearinfrared spectroscopy, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
32 Design and Simulation of CCM Boost Converter for Power Factor Correction Using Variable Duty Cycle Control

Authors: M. Nirmala

Abstract:

Power quality in terms of power factor, THD and precisely regulated output voltage are the major key factors for efficient operation of power electronic converters. This paper presents an easy and effective active wave shaping control scheme for the pulsed input current drawn by the uncontrolled diode bridge rectifier thereby achieving power factor nearer to unity and also satisfying the THD specifications. It also regulates the output DC-bus voltage. CCM boost power factor correction with constant frequency operation features smaller inductor current ripple resulting in low RMS currents on inductor and switch thus leading to low electromagnetic interference. The objective of this work is to develop an active PFC control circuit using CCM boost converter implementing variable duty cycle control. The proposed scheme eliminates inductor current sensing requirements yet offering good performance and satisfactory results for maintaining the power quality. Simulation results have been presented which covers load changes also.

Keywords: CCM Boost converter, Power factor Correction, Total harmonic distortion, Variable Duty Cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7505
31 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
30 Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface

Authors: V. Sivakumar, R. Neelakantan

Abstract:

Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M3 sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region.

Keywords: Chandrayaan-1, moon mineralogy mapper, orientale basin, moon, spectroscopy, hyperspectral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
29 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption

Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman

Abstract:

In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.

Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960