Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behavior of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Currentvoltage curves are particularly analyzed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: Electrostatic precipitator, current-voltage characteristics, Least Squares method, electric field, magnetic field.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110776

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104

References:


[1] A. Mizuno, Electrostatic precipitation, IEEE Trans. Dielectr. Electr. Insul. 7, pp. 615-624, 2000.
[2] J. S. Chang, Next generation integrated electrostatic gas cleaning systems, J. Electrostat. 57, pp. 273-291, 2003.
[3] T. Yamamoto and H. R. Velkoff, Electrohydrodynamics in an electrostatic precipitator, J. Fluid Mech. 108, pp. 1–18, 1981
[4] P. Atten, F. M. J. Mccluskey and A. C. Lahjomri, The electrohydrodynamic origin of turbulence in electrostatic precipitators, IEEE Trans. Ind. Appl, 23, pp. 705–711, 1987.
[5] J. Podliński, J. Dekowski, J. Mizeraczyk, D. Brocilo and J. S. Chang, Electrohydrodynamic gas flow in a positive polarity wire-plate electrostatic precipitator and the related dust particle collection efficiency, J. Electrostatic. 64, pp.259-262, 2006.
[6] N. Zouzou, B. Dramane, P. Braud, E. Moreau and G. Touchard, EHD flow in DBD precipitator, IJPEST, 3, pp.142-145, 2009.
[7] H. Nouri, N. Zouzou, E. Moreau, L. Dascalescu, Y. Zebboudj, Effect of relative humidity on the collection efficiency of a wire-to-plane electrostatic precipitator, The IEEE Industry Applications Society Annual Meeting, Houston, Tx, ISSN: 0197-2618, Print ISBN: 978-1- 4244-6393-0 3-7 October, 2010.
[8] K. R. Parker, Applied Electrostatic Precipitation, Edition Kluwer Academic Publishers, London, 1997.
[9] H. Nouri, N. Zouzou, E. Mreau, L. Dascalescu, Y. Zebboudj, Effect of Relative Humidity on Current-Voltage Characteristics of an Electrostatic Precipitator, Journal of Electrostatics, 2012, Vol 70 N° 1, pp. 20-24, 2012.
[10] H. Nouri and Y. Zebboudj, Analysis of Positive Corona in Wire-to-Plate Electrostatic Precipitator, Eur. Phys. J. Appl. Phys., Vol. 49,p 11001, 2010.
[11] A. Bologa, H. R. Paur, H. Seifert, Th. Wäscher and K. Woletz, Novel wet electrostatic precipitator for collection of fine aerosol, J. Electrostatics. 67, pp.150–153, 2009.
[12] P. Joaquim, S. Marques, Applied Statistics Using SPSS, STATISTICA, MATLAB and R. Springer-Verlag Berlin Heidelberg, Second Edition, pp. 271- 327, 2007.
[13] D. Alexander, Z. Poularikas, M. Ramadan, Adaptive filtering primer with matlab. CRC Press Taylor & Francis Group, pp. 101 - 197, 2006.
[14] F. van der Heijden, R .P. W. Duin, D. de Ridder, D. M. J. Tax, Classification, Parameter Estimation and State Estimation An Engineering Approach using MATLAB, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, pp. 13 -138, 2004.
[15] M. Boumahrat, A.Gourdin, Méthodes numériques appliquée, OPU, pp. 293 – 364, 1993.
[16] P. Borne, Modélisation et identification des processus, Tome 2, Editions Technip, Paris, France, 1992.
[17] M. Abdel– Salam, Z. Al– Hamouz, Analysis of monopolar ionized field as influenced by ion diffusion, IEEE Trans., Ind. App, vol.31, pp.484- 493, 1995.
[18] S. Pasare, calcul de champ magnétique d'une ligne aérienne a haute tension, Electrical engineering series, N°:32, 2008.
[19] M. Nicolas, Ondes et électromagnétisme, Dunod, Paris, ISBN 978-2-10- 054276-5, pp.133- 159, 2009.