Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31821
Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism

Authors: Chathurika D. Abeyrathne, Malka N. Halgamuge, Peter M. Farrell


There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.

Keywords: Bio-effect, biological clock, magnetoreception, radical pair mechanism, weak magnetic field.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140


[1] N. A. Belova, and V. V. Lednev, "Dependence of the gravitropic response in flax stem segments on the frequency and amplitude of a weak combined magnetic field", Biophysics, vol. 45, pp. 1108-1111, 2000.
[2] V. V. Lednev, "Possible mechanism for the influence of weak magnetic fields on biological systems", Bioelectromagnetics, vol. 12, pp. 71-75, 1991.
[3] M. N. Halgamuge, C. D. Abeyrathne and P. Mendis, "Effect of Cyclotron Resonance Frequencies in Particles Due to AC and DC Electromagnetic Fields", World Academy of Science, Engineering and Technology, vol. 52, pp 416-419, 2009.
[4] R. K. Adair, "Constraints on biological effects of weak extremely low frequency electromagnetic fields", Physical Review A, vol. 43, pp. 1039-1048, 1991.
[5] M. N. Halgamuge, B. R. R. Persson, L. G. Salford, P. Mendis and J. L. Eberhardt, "Comparison between Two Models for Interactions between Electric and Magnetic Fields and Proteins in Cell Membranes", Environmental Engineering Science, vol 26, no. 10, pp. 1473-1480, 2009.
[6] R. J. Gegear, A. Casselman, S. Waddell, and S. M. Reppert, "Cryptochrome mediates light-dependent magnetosensitivity in Drosophila", Nature, vol. 454, pp. 1014-1018, 2008.
[7] W. Wiltschko, and R. Wiltschko, "Magnetoreception in birds: two receptors for two different tasks", Journal of Ornithology, vol. 148, pp. S61-S76, 2007.
[8] K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell et al., "Chemical compass model of avian magnetoreception", Nature, vol. 453, 2008.
[9] K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, and A. L. Buchachenko, "Spin polarization and magnetic effects in radical reactions", vol. 22, Hungary: Elsevier Science Publishers, 1984.
[10] M. Ahmad, P. Galland, T. Ritz, R. Wiltschko, and W. Wiltschko, "Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana", Planta, vol. 225, pp. 615-624, 2007.
[11] T. Yoshii, M. Ahmad, and C. Helfrich-Forster, "Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila-s Circadian Clock", PLoS Biology, vol. 7, no. 4, pp. 0813-0819, 2009.
[12] N. Mostafaie, E. K. llay, E. Sauerzapf, E. Bonner, S. Kriwanek, H. S. Cross, et al., "Correlated Downregulation of Estrogen Receptor Beta and the Circadian Clock Gene Per1 in Human Colorectal Cancer", Molecular Carcinogenesis, vol. 48, pp. 642-647, 2009.
[13] D. Velissaris, V. Karamouzos, P. Polychronopoulos, and M. Karanikolas, "Chronotypology and melatonin alterations in minimal hepatic encephalopathy", Journal of Circadian Rhythms, vol. 7, pp. 6, 2009.
[14] O. Hiwaki, "Influence of 50 Hz magnetic fields on circadian rhythm of the suprachiasmatic nucleus activity", Paper presented at the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998.
[15] T. Elvitigala, J. Stckel, B. K. Ghosh, and H. B. Pakrasi, "Effect of continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142". BMC Genomics, vol. 10, pp. 226, 2009.
[16] H. Shimada, K. Numazawa, T. Sasaki, N. Kato, and T. Ebisawa, "Introduction of tau Mutation into Cultured Rat1-R12 Cells by Gene Targeting, Using Recombinant Adeno-Associated Virus Vector". Cell Mol Neurobiol, 29, 699-705.
[17] E. Rieper, E. Gauger, J. J. L. Morton, S. C. Benjamin, and V. Vedral, "Quantum coherence and entanglement in the avian compass", 2009.
[18] J. Aguzzi, P. Puig, and J. B. Company, "Hydrodynamic, non-photic modulation of biorhythms in the Norway lobster Nephrops norvegicus (L.)", Deep-Sea Research I, vol. 56, pp. 366-373, 2009.
[19] S. Liu, Y. Cai, R. B. Sothern, Y. Guan, and P. Chan, "Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice", Chronobiology International, vol. 24, no. 5, pp. 793-820, 2007.
[20] F. Weber, "Remodeling the clock: coactivators and signal transduction in the circadian clockworks", Naturwissenschaften, vol. 96, pp. 321-337, 2009.
[21] M. Yamato, N. Ishida, H. Iwatani, M. Yamato, H. Rakugi, and T. Ito, "Kid-1 participates in regulating ERK phosphorylation as a part of the circadian clock output in rat kidney", Journal of Receptors and Signal Transduction, vol. 29, no. 2, pp. 94-99, 2009.
[22] A. Mehra, C. I. Hong, M. Shi, J. J. Loros, J. C. Dunlap, and P. Ruoff, "Circadian Rhythmicity by Autocatalysis", PLoS Computational Biology, 2(7), 0816-0823.
[23] T. M. Fitzgerald, and P. D. Taylor, "Migratory orientation of juvenile yellow-rumped warblers (Dendroica coronata) following stopover: sources of variation and the importance of geographic origins", Behav Ecol Sociobiol, vol. 62, pp. 1499-1508, 2008.
[24] W. Wiltschko, and R. Wiltschko, "Magnetic Compass of European Robins", Science, vol. 176, pp. 62-64, 2009.
[25] P. Galland, A. Pazur, "Magnetoreception in plants", Journal of Plant Research, vol. 118, no. 6, pp. 371-389, 2005.
[26] T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko, and W. Wiltschko, "Resonance effects indicate a radical-pair mechanism for avian magnetic compass", Nature, vol. 429, 2004.
[27] C. B. Anea, M. Zhang, D. W. Stepp, G. B. Simkins, G. Reed, D. J. Fulton, et al, "Vascular Disease in Mice With a Dysfunctional Circadian Clock", Journal of the American Heart Association, vol. 119, pp. 1510-1517, 2009.
[28] H. J.Werner, Z. Schulten, and K. Schulten, "Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents : Application to the pyrene-N,N-dimethylaniline system", The Journal of Chemical Physics, vol. 67, no. 2, pp. 646-663, 1977.
[29] K. Schulten, "Biological effects of static and extremely low frequency magnetic fields", BGA Schriften, vol. 86, no. 3, pp. 133-140, 1986.
[30] T. Miura, K. Maeda, and T. Arai, "The Spin Mixing Process of a Radical Pair in Low Magnetic Field Observed by Transient Absorption Detected Nanosecond Pulsed Magnetic Field Effect", J. Phys. Chem. A, vol. 110, pp. 4151-4156, 2006.
[31] C. R. Timmel, and K. B. Henbest, "A Study of Spin Chemistry in Weak Magnetic Fields", The Royal Society, vol. 362, pp. 2573-2589, 2004.
[32] M. B. Plenio, and S. F. Huelga, "Dephasing-assisted transport: quantum networks and biomolecules", New Journal of Physics, vol. 10, 2008.
[33] K. Wang, and T. Ritz, "Zeeman resonances for radical-pair reactions in weak static magnetic fields", Molecular Physics, vol. 104, pp. 1649-1658, 2006.
[34] S. Engstrom, "Magnetic field effects on free radical reactions in biology", In: Taylor and Francis Group, LLC, 2006.
[35] I. R. Gould, N. J. Turro, and M. B. Zimmt, "Magnetic field and magnetic isotope effects on the products of organic reactions", In V. Gold and D. Bethell (Eds.), Advances In Physical Organic Chemistry (Vol. 20, pp. 1 - 51). London: Academic Press Inc Ltd, 1984.
[36] T. Ritz, S. Adem, and K. Schulten, "A Model for Photoreceptor-Based Magnetoreception in Birds", Biophysical Journal, vol. 78, pp. 707-718, 2000.
[37] K. B. Henbes, K. Maeda, P. J. Hore, M. Joshi, A. Bacher, R. Bittl, et al, "Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase", Proceedings of the National Academy of Sciences, vol. 105, no. 38, pp. 14395-14399, 2008.
[38] I. A. Solovyov, and W. Greiner, "Theoretical Analysis of an Iron Mineral-Based Magnetoreceptor Model in Birds", Biophysical Journal, vol. 93, pp. 1493-1509, 2007.
[39] C. Eichwald, and J. Walleczek, "Model for magnetic field effects on radical pair recombination in enzyme kinetics", Biophysical Journal, vol. 71, pp. 623-631, 1996.
[40] C. Eichwald, and J. Walleczek, "Magnetic field perturbations as a tool for controlling enzyme-regulated and oscillatory biochemical reactions", Biophysical Chemistry, vol. 74, pp. 209-224, 1998.
[41] R. K. Adair, "Effects of very weak magnetic fields on radical pair reformation", Bioelectromagnetics, vol. 20, pp. 255-263, 1999.
[42] M. Zmyslony, E. Rajkowska, P. Mamrot, P. Politanski, & J. Jajte, "The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals in rat lymphocytes in vitro", Bioelectromagnetics, vol. 25, pp. 607-612, 2004.
[43] F. Regoli, S. Gorbi, N. Machella, S. Tedesco, M. Benedetti, R. Bocchetti, et al, "Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa", Free Radical Biology & Medicine, vol. 39, pp. 1620-1628, 2005.
[44] J. D. MacArthur, "Cell phones and the brain The Townsend Letter for Doctors and Patients", pp. 1-13, 2002.