Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization
Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal
Abstract:
This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.
Keywords: Thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1336194
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674References:
[1] C. A. Balanis, Antenna Theory and Design, 3rd Edition, John Wiley & Sons, 2005.
[2] M. Chryssomallis, "Smart antennas,” IEEE Antennas and Propagation Magazine, vol. 42, no. 3, pp. 129-136, Jun. 2000.
[3] P. Ioannides and C. A. Balanis, "Uniform circular arrays for smart antennas,” IEEE Antennas and Propagation Magazine, vol. 47, no. 4, pp. 192-206, Aug. 2005.
[4] A. A. Lotfi, M. Ghiamy, M. N. Moghaddasi, and R. A. Sadeghzadeh, "An investigation of hybrid elliptical antenna arrays,” IET Microw. Antennas Prop., vol. 2, no. 1, pp. 28-34, Jan. 2008.
[5] K. R. Mahmoud, M. El-Adway, S. M. M. Ibrahem, R. Basnel, R. Mahmoud, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm algorithm,” Progress in Electromagnetic Research, PIER, vol. 72, pp. 75-90, 2007.
[6] M. Dessouky, H. Sharshar, and Y. Albagory, "Efficient sidelobe reduction technique for small - sized concentric circular arrays,” Progress in Electromagnetics Research, PIER, vol. 65, pp. 187-200, 2006.
[7] R. Bera and J. S. Roy, "Optimization of Thinned Elliptical Antenna Arrays Using Particle Swarm Optimization,” In Proc. IEEE CODIS, pp. 527-530, Kolkata, 28-29 Dec. 2012.
[8] A. Razavi, and K. Forooraghi, "Thinned arrays using pattern search algorithms,” Progress In Electromagnetics Research, PIER 78, 61-71, 2008.
[9] R. L. Haupt, "Thinned arrays using genetic algorithms,” IEEE Trans. Antennas Propag., Vol. 42, No. 7, pp. 993-999, 1994.
[10] L. Schwartzman, "Element behaviour in a thinned array,” IEEE Trans. Antennas Propag., Vol. 15, No. 7, pp. 571-572, 1967.
[11] D. Mandal, S. P. Ghoshal, A. K. Bhattacharjee, "Design of Concentric Circular Antenna Array With Central Element Feeding Using Particle Swarm Optimization With Constriction Factor and Inertia Weight Approach and Evolutionary Programming Technique” Journal of Infrared Milli Terahz Waves, vol. 31, no. 6, pp. 667 680, 2010.
[12] R. C. Eberhart, and Y. Shi, "Particle swarm optimization: Developments, applications and resources," Proc. Evolutionary Computation Congress, vol. 1, pp. 81-86, 2001.
[13] N. Jin and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 556-567, March 2007.