Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface

Authors: V. Sivakumar, R. Neelakantan

Abstract:

Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M3 sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region.

Keywords: Chandrayaan-1, moon mineralogy mapper, orientale basin, moon, spectroscopy, hyperspectral.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339147

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858

References:


[1] Burns, R. G., Mineralogical applications of crystal field theory. Cambridge University Press, 1993, vol. 5, pp.220-242.
[2] Sivakumar, V. and Neelakantan R., Mineral mapping of lunar highland region using Moon Mineralogy Mapper (M3) hyperspectral data, Geological Society of India, 2015, vol. 86 (5), pp.513–518.
[3] Sivakumar, V., Neelakantan, R. and Biju, C., An analysis of mineral composition on the Moon surface using Moon orbital data (hyperspectral imaging spectrometer data), Geological Society of India, 2015, (In Press).
[4] Arivazhagan, S., Quantitative Characterization of Lunar Mare Orientale Basalts Detected by Moon Mineralogical Mapper on Chandrayaan-1. In Planetary Exploration and Science: Recent Results and Advances, Springer Berlin Heidelberg, 2015, pp.21-43.
[5] Anbazhagan, S., & Arivazhagan, S., Reflectance spectra of analog anorthosites: Implications for lunar highland mapping. Planetary and Space Science, 2010, vol. 58(5), pp.752-760. Klima, R. L., Pieters, C. M., Boardman, J. W., Green, R. O., Head, J. W., Isaacson, P. J., ... & Tompkins, S., New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research: Planets (1991–2012), 2011, vol. 116(E6), pp.21-29.
[7] Adams, J. B., Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system, Journal of Geophysical Research, 1974, vol.79(32), pp.4829–4835.
[8] Wilhelms, D. E., McCauley, J. F. and Trask, N. J., The geologic history of the Moon, Washington: USGPO; Denver, CO (Federal Center, Box 25425, Denver 80225): US Geological Survey, 1987, vol. 1348, pp.302.
[9] Spudis, P. D., The Geology of Multi-ring Basins: The Moon and Other Planets, Cambridge University Press, New York and Cambridge, 1993, pp.263.
[10] Spudis, P. D., and Ryder G., Apollo 17 impact melts and their relation to the Serenitatis Basin. In multi-ring basins, Proc. Lunar Planet. Sci. Conf., 1981, vol.12A, pp.133–148.
[11] McCauley, J. F., Orientale and Caloris, Phys. Earth Planet. Inter., 1977, vol.15, pp.220–250.
[12] Gillis, J. J., The composition and geologic setting of mare deposits on the far side of the Moon, PhD dissertation, Rice Univ., Houston TX, 1998, pp.257.
[13] Spudis, P. D., B. R. Hawke, and Lucey P., Composition of Orientale Basin deposits and implications for the lunar basin-forming process. Proceedings, lunar and planetary science conference 15, J. Geophys. Res., 1984, vol.89, pp.C197–C210. Bussey, D. B. J., and Spudis P. D., Compositional analysis of the Orientale Basin using full resolution Clementine data: Some preliminary results, Geophys. Res. Lett., 1997, vol.24, pp.445–448.
[15] Cheek, L. C., Donaldson Hanna K. L., Pieters C. M., Head J. W., and Whitten J. L., Distribution and purity of anorthosite across the Orientale Basin: New perspectives from Moon Mineralogy Mapper data, J. Geophys. Res. Planets, 2013, vol.118, pp.1805–1820.
[16] Goswami, J. N. and Annadurai, M., Chandrayaan-1: India’s first planetary science mission to the Moon, Lunar Planetary Science (CDROM), Abstract, 2009, vol. 40, pp.2571.
[17] Pieters, C., Boardman, J., Buratti, B., Chatterjee, A., Clark, R., Glavich, T., Green, R., Head III, J., Isaacson, P., Malaret, E., et al., The Moon Mineralogy Mapper (M3) on Chandrayaan-1, Current Science, 2009, vol. 96, pp.500–505.
[18] Diviner Global Composition map by NASA/GSFC/UCLA/JPL, 2010. http://www.nasa.gov/images/content/482363main_v_06_b_greenhagen_sm1.jpg, accessed on October, 2015.
[19] Pieters, C.M., Compositional diversity and stratigraphy of the lunar crust derived from Reflectance spectroscopy, Remote Geochemical Analysis, Cambridge University Press, 1993, vol.14, pp.309-339.
[20] Borst, A. M., Foing, B. H., Davies, G. R., and Van Westrenen, W., (Surface mineralogy and stratigraphy of the lunar South Pole-Aitken basin determined from Clementine UV/VIS and NIR data, Planetary and Space Science, 2012, vol.68(1), pp.76-85.
[21] Klima, R. L. and Pieters, C. M., MGM analysis of pyroxene mineral separates from Apollo 15 and 17, Lunar and Planetary Science Conference, Lunar and Planetary Institue Technical Report, 2008, vol.39 pp.1756.
[22] Adams, J. B. and Goullaud, L. H., Plagioclase feldspars: Visible and near infrared diffuse reflectance spectra as applied to remote rensing, in Lunar Planetary Science Conference, 1978, vol.9, pp.1–3.
[23] Conel, J.E. and Nash, D.B., Spectral reflectance and albedo of Apollo 11 lunar samples: Effects of irradiation and vitrification and comparison with telescopic observations, Proceedings of the Apollo 11 Lunar Science Conference, 1970, vol.3, pp.2013–2024.
[24] Cloutis, E. A., Sunshine, J. M., and Morris, R. V. Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry, Meteoritics and Planetary Science, 2004, vol.39(4), pp.545-566.
[25] Pieters, C. M., Hanna, K. D., Cheek, L., Dhingra, D., Prissel, T., Jackson, C., ... & Taylor, L. A., The distribution of Mg-spinel across the Moon and constraints on crustal origin, The Second Conference on the Lunar Highlands Crust and New Directions, American Mineralogist, 2014, vol.99(10), pp.1893-1910.