Search results for: Cylindrical pressure tubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1607

Search results for: Cylindrical pressure tubes

1427 Density Wave Instability of Supercritical Kerosene in Active Cooling Channels of Scramjets

Authors: N. Wang, Y. Pan, J. Zhou, J. Lei, X. Z. Yang

Abstract:

Experimental investigations were made on the instability of supercritical kerosene flowing in active cooling channels. Two approaches were used to control the pressure in the channel. One is the back-pressure valve while the other is the venturi. In both conditions, a kind of low-frequency oscillation of pressure and temperature is observed. And the oscillation periods are calculated. By comparison with the flow time, it is concluded that the instability occurred in active cooling channels is probably one kind of density wave instability. And its period has no relationship with the cooling channel geometry, nor the pressure, but only depends on the flow time of kerosene in active cooling channels. When the mass flow rate, density and pressure drop couple with each other, the density wave instability will appear.

Keywords: scramjets, active cooling, instability, density wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1426 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics

Authors: Yu Shi, Rong Liu, Jingyun Lv

Abstract:

Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.

Keywords: Laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280
1425 The Sublimation Energy of Metal versus Temperature and Pressure and its Influence on Blow-off Impulse

Authors: Wenhui Tang, Daorong Wang, Xia Huang, Xianwen Ran

Abstract:

Based on the thermodynamic theory, the dependence of sublimation energy of metal on temperature and pressure is discussed, and the results indicate that the sublimation energy decreases linearly with the increase of temperature and pressure. Combined with this result, the blow-off impulse of aluminum induced by pulsed X-ray is simulated by smoothed particle hydrodynamics (SPH) method. The numerical results show that, while the change of sublimation energy with temperature and pressure is considered, the blow-off impulse of aluminum is larger than the case that the sublimation energy is assumed to be a constant.

Keywords: sublimation energy, blow-off impulse, pulsed X-ray, SPH method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900
1424 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies

Authors: Chinsuk Hong

Abstract:

This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.

Keywords: Wall Pressure Fluctuation, Boundary Layer Flow, Transition, Turbulent Flow, Axisymmetric Body, Flow Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1423 Amplification of Compression Waves in Clean and Bubbly Liquid

Authors: Robert I. Nigmatulin, Raisa Kh. Bolotnova, Nailya K. Vakhitova, Andrey S. Topolnikov, Svetlana I. Konovalova, Nikolai A. Makhota

Abstract:

The theoretical investigation is carried out to describe the effect of increase of pressure waves amplitude in clean and bubbly liquid. The goal of the work is to capture the regime of multiple magnification of acoustic and shock waves in the liquid, which enables to get appropriate conditions to enlarge collapses of micro-bubbles. The influence of boundary conditions and frequency of the governing acoustic field is studied for the case of the cylindrical acoustic resonator. It has been observed the formation of standing waves with large amplitude at resonant frequencies. The interaction of the compression wave with gas and vapor bubbles is investigated for the convergent channel. It is shown theoretically that the chemical reactions, which occur inside gas bubbles, provide additional impulse to the wave, that affect strongly on the collapses of the vapor bubbles

Keywords: acoustics, cavitation, detonation, shock waves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1422 Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.

Keywords: Shock velocity, detonation, shock acceleration, shock pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
1421 Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building

Authors: Marco Raciti Castelli, Sergio Toniato, Ernesto Benini

Abstract:

The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.

Keywords: CFD, wind, building, hemicylindrical roof.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
1420 Experimental Investigation on Excess Pore Water Pressure in Soft Soil-Foundations under Minor Shocks

Authors: Zhiying Zhang, Chongdu Cho, Qiang Pan, Xilin Lu

Abstract:

In this study, shaking table tests are performed to investigate the behavior of excess pore water pressure in different soft soil-foundations of soil-structure interaction (SSI) system. The variation of the behaviors under cycled minor shock is observed. Moreover, The generation and variation mechanism of excess pore water pressure under earthquake excitation in different soft soilfoundations are analyzed and discussed.

Keywords: Excess pore water pressure, shaking table tests, soft soil foundation, SSI system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
1419 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
1418 Study on the Deformation Modes of an Axially Crushed Compact Impact Absorption Member

Authors: Shigeyuki Haruyama, Hiroyuki Tanaka, Dai-Heng Chen, Aidil Khaidir Bin Muhamad

Abstract:

In this paper, the deformation modes of a compact impact absorption member subjected to axial compression are investigated using finite element method and experiments. A multiple combination compact impact absorption member, referred to as a 'compress-expand member', is proposed to substitute the conventional thin-walled circular tube. This study found that the proposed compact impact absorption member has stable load increase characteristics and a wider range of high load efficiency (Pave/Pmax) than the thin-walled circular tube. Moreover, the proposed compact impact absorption member can absorb larger loads in a smaller radius than the thin-walled cylindrical tube, as it can maintain its stable deformation in increased wall thicknesses.

Keywords: axial collapse, compact impact absorption member, finite element method, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1417 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen

Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang

Abstract:

In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.

Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
1416 Applying Similarity Theory and Hilbert Huang Transform for Estimating the Differences of Pig-s Blood Pressure Signals between Situations of Intestinal Artery Blocking and Unblocking

Authors: Jia-Rong Yeh, Tzu-Yu Lin, Jiann-Shing Shieh, Yun Chen

Abstract:

A mammal-s body can be seen as a blood vessel with complex tunnels. When heart pumps blood periodically, blood runs through blood vessels and rebounds from walls of blood vessels. Blood pressure signals can be measured with complex but periodic patterns. When an artery is clamped during a surgical operation, the spectrum of blood pressure signals will be different from that of normal situation. In this investigation, intestinal artery clamping operations were conducted to a pig for simulating the situation of intestinal blocking during a surgical operation. Similarity theory is a convenient and easy tool to prove that patterns of blood pressure signals of intestinal artery blocking and unblocking are surely different. And, the algorithm of Hilbert Huang Transform can be applied to extract the character parameters of blood pressure pattern. In conclusion, the patterns of blood pressure signals of two different situations, intestinal artery blocking and unblocking, can be distinguished by these character parameters defined in this paper.

Keywords: Blood pressure, spectrum, intestinal artery, similarity theory and Hilbert Huang Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1415 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.

Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
1414 Pressure Losses on Realistic Geometry of Tracheobronchial Tree

Authors: Michaela Chovancova, Jakub Elcner

Abstract:

Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculation of pressure losses in the real lungs is time consuming and inefficient process due to its complexity and diversity. For these calculations is necessary to slightly simplify the geometry of lungs (same cross-section over the length of individual generation) or use one of the idealized models of lungs (Horsfield, Weibel). The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli and continuity equations. The aim of the article is to analyse the accuracy of the analytical method and its possibility of use for the calculation of pressure losses in lower generations, which is difficult to solve by numerical method due to the small geometry.

Keywords: Pressure gradient, airways resistance, real geometry of bronchial tree, breathing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1413 Gas Condensing Unit with Inner Heat Exchanger

Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga

Abstract:

Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.

Keywords: Gas condensing unit, filling, inner heat exchanger, package, spraying, tunes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
1412 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium

Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin

Abstract:

In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.

Keywords: Braced tube, diagrid, framed tube, hexagrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
1411 Study of a Four-Bed Pressure Swing Adsorption for Oxygen Separation from Air

Authors: Moghadazadeh Zahra, Towfighi Jafar, Mofarahi Masoud

Abstract:

This article is presented an experimental and modeling study of a four-bed pressure swing adsorption process using zeolite13X to provide oxygen-enriched air. The binary mixture N2/O2 (79/21 vol %) was used as a feed stream. The effects of purge/feed ratio (P/F), adsorption pressure, cyclic time and product flow rate on product purity and recovery under nonisothermal condition were studied. The adsorption dynamics of process were determined using a mathematical model incorporated mass and energy balances. A Mathlab code using finite difference method was developed to solve the set of coupled differential-algebraic equations, and the simulation results are agreed well with experimental results.

Keywords: Pressure swing adsorption (PSA), Oxygen, Zeolite 13X.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3864
1410 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
1409 Reduction of MMP Using Oleophilic Chemicals

Authors: C. L. Voon, M. Awang

Abstract:

CO2 miscible displacement is not feasible in many oil fields due to high reservoir temperature as higher pressure is required to achieve miscibility. The miscibility pressure is far higher than the formation fracture pressure making it impossible to have CO2 miscible displacement. However, by using oleophilic chemicals, minimum miscibility pressure (MMP) could be lowered. The main objective of this research is to find the best oleophilic chemical in MMP reduction using slim-tube test and Vanishing Interfacial Tension (VIT) The chemicals are selected based on the characteristics that it must be oil soluble, low water solubility, have 4 – 8 carbons, semi polar, economical, and safe for human operation. The families of chemicals chosen are carboxylic acid, alcohol, and ketone. The whole experiment would be conducted at 100°C and the best chemical is said to be effective when it is able to lower CO2-crude oil MMP the most. Findings of this research would have great impact to the oil and gas industry in reduction of operation cost for CO2EOR which is applicable to both onshore and offshore operation.

Keywords: Enhanced Oil Recovery, Oleophilic Chemical, Minimum Miscibility Pressure, CO2 Miscible Displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2460
1408 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose

Authors: N. Zanganeh, M. Zabet

Abstract:

Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first.  Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.

Keywords: Ethanol, lactose, lactulose syrup, purification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121
1407 Adaptive Helmholtz Resonator in a Hydraulic System

Authors: Lari Kela

Abstract:

An adaptive Helmholtz resonator was designed and adapted to hydraulics. The resonator was controlled by open- and closed-loop controls so that 20 dB attenuation of the peak-to-peak value of the pulsating pressure was maintained. The closed-loop control was noted to be better, albeit it was slower because of its low pressure and temperature variation, which caused variation in the effective bulk modulus of the hydraulic system. Low-pressure hydraulics contains air, which affects the stiffness of the hydraulics, and temperature variation changes the viscosity of the oil. Thus, an open-loop control loses its efficiency if a condition such as temperature or the amount of air changes after calibration. The instability of the low-pressure hydraulic system reduced the operational frequency range of the Helmholtz resonator when compared with the results of an analytical model. Different dampers for hydraulics are presented. Then analytical models of a hydraulic pipe and a hydraulic pipe with a Helmholtz resonator are presented. The analytical models are based on the wave equation of sound pressure. Finally, control methods and the results of experiments are presented.

Keywords: adaptive, damper, hydraulics, pressure, pulsating

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4341
1406 Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump

Authors: Mohammad T. Shervani-Tabar, Navid Shervani-Tabar

Abstract:

Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge.

Keywords: Axial Flow Pump, Cavitation, Gap Cavitation, Tip Vortex Cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
1405 Two-dimensional Analytical Drain Current Model for Multilayered-Gate Material Engineered Trapezoidal Recessed Channel(MLGME-TRC) MOSFET: a Novel Design

Authors: Priyanka Malik A, Rishu Chaujar B, Mridula Gupta C, R.S. Gupta D

Abstract:

In this paper, for the first time, a two-dimensional (2D) analytical drain current model for sub-100 nm multi-layered gate material engineered trapezoidal recessed channel (MLGMETRC) MOSFET: a novel design is presented and investigated using ATLAS and DEVEDIT device simulators, to mitigate the large gate leakages and increased standby power consumption that arise due to continued scaling of SiO2-based gate dielectrics. The twodimensional (2D) analytical model based on solution of Poisson-s equation in cylindrical coordinates, utilizing the cylindrical approximation, has been developed which evaluate the surface potential, electric field, drain current, switching metric: ION/IOFF ratio and transconductance for the proposed design. A good agreement between the model predictions and device simulation results is obtained, verifying the accuracy of the proposed analytical model.

Keywords: ATLAS, DEVEDIT, NJD, MLGME- TRCMOSFET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1404 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete

Authors: Fatih Hattatoglu, Abdulrezzak Bakiş

Abstract:

In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.

Keywords: Rigid pavement, reactive powder concrete, combined cure, pressure test, flexural test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1403 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: Fluid mechanics, compressible flow, heat transfer, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
1402 The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings

Authors: Mustafa Altin, Sakir Tasdemir, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Sevda Altin

Abstract:

In this study, an experiment was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally 81 samples which included 3 different wood species, 3 different sizes, 2 different fire retardants and 2 unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure.

Keywords: Resistance of wood against pressure, species of wood, variance analysis, wood coating, wood fire safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1401 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector

Authors: S. M. Golgoun, S. M. Taheri

Abstract:

Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. Various ways have been proposed to detect radiation so far and different detectors have been designed. A gas sealed proportional counter is one of these detectors which has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency of the detector. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.

Keywords: Gas sealed detector, proportional detector, gas pressure measurement, counter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348
1400 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study

Authors: M. Ali, K. Alam, E. Ohioma

Abstract:

This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.

Keywords: Thermal, mechanical, composites, square tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
1399 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs. 

Keywords: cushion, image processing, pressure mapping system, wheelchair

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
1398 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform

Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee

Abstract:

It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.

Keywords: CFD, Coanda, Lift, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602