
 

 

 
Abstract— An adaptive Helmholtz resonator was designed and 

adapted to hydraulics. The resonator was controlled by open- and 
closed-loop controls so that 20 dB attenuation of the peak-to-peak 
value of the pulsating pressure was maintained. The closed-loop 
control was noted to be better, albeit it was slower because of its low 
pressure and temperature variation, which caused variation in the 
effective bulk modulus of the hydraulic system. Low-pressure 
hydraulics contains air, which affects the stiffness of the hydraulics, 
and temperature variation changes the viscosity of the oil. Thus, an 
open-loop control loses its efficiency if a condition such as 
temperature or the amount of air changes after calibration. The 
instability of the low-pressure hydraulic system reduced the 
operational frequency range of the Helmholtz resonator when 
compared with the results of an analytical model. 

Different dampers for hydraulics are presented. Then analytical 
models of a hydraulic pipe and a hydraulic pipe with a Helmholtz 
resonator are presented. The analytical models are based on the wave 
equation of sound pressure. Finally, control methods and the results 
of experiments are presented.  
 
Keywords— adaptive, damper, hydraulics, pressure, pulsating 

I. INTRODUCTION 
Pressure accumulators, T-pipes, chamber resonators (line 

filters), multi-degree-of-freedom mass-spring dampers, 
dampers based on plate elements and Helmholtz resonators 
can be used in hydraulic systems to damp out pulsating 
pressure. 

 

 
 
Fig. 1 Cross-section of a pressure accumulator 

 
Accumulators are widely used in hydraulics, but they are 

not efficient at high frequencies [1]. An accumulator should 
be placed within 0.3 m of the source of disturbance and the 
supply line between the accumulator and the main pipe should 

be short, preferably between 0.05 and 0.1 m [2]. Heat causes 
problems in continuous use of accumulators because of 
mechanical movement (stress) of the bladder; see Fig. 1. 

A T-pipe (T-filter, band-pass filter) is a side-branch pipe 
that is closed off at the end; see Fig. 2. The pulsating pressure 
at a certain frequency is damped if the length of the T-pipe is 
 

lT-pipe = 
4
λ  

 
where λ is the wavelength 
 

λ = 
f
a  

 
where a is the pressure wave velocity (sound velocity) in a 
medium and f is frequency. A long T-pipe is required if a low 
frequency has to be damped out [1, 2]. For example, if the 
wave velocity is 1400 m/s and the excitation frequency is 
20 Hz, the length of the T-pipe has to be 17.5 m to damp out 
the pulsating pressure. If the T-pipe is replaced with a short 
open-ended pipe (orifice branch), a high-pass filter is obtained 
[3]. However, an orifice branch is unsuitable in hydraulics. 

A line chamber resonator (line filter, low-pass filter) is in 
line with the main pipe so that an enlarged section is inserted 
into the main pipe; see Fig. 2 [3, 4]. The required length of the 
chamber resonator can be calculated with equation (1); a long 
resonator is required for low frequencies. In his dissertation 
Kiesbauer [4] presented a chamber resonator 
(Reihenresonator) and flow simulations in the frequency 
domain. 

 

 
 
Fig. 2 Example of a line chamber resonator and a T-filter 

 
Mikota [1] presented a multi-degree-of-freedom mass-

spring compensator and a compensator based on plate 
elements; see Figs. 3 and 4, respectively. A multi-degree-of-
freedom mass-spring compensator is constructed by adding 
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springs and masses to a cylinder which is added to the 
hydraulic line so that one of the masses is acted on by pressure 
P(t). A sealing element is used to prevent oil leakages. The 
compensator can be designed to damp out several excitation 
frequencies by adding more masses and springs to the system 
so that the natural frequencies of the compensator equal the 
excitation frequencies of the hydraulic system [1]. 

 

 
 

Fig. 3 Principle of a multi-degree-of-freedom mass-spring 
compensator with three bodies. Q is flow, ki is a spring, mi is a mass, 
ci is a damper and AN is piston area. Modified from [1] 
 

 
 
Fig. 4 Principle of a compensator based on plate elements 

 
A compensator based on a plate element is constructed by 

clamping a plate of homogenous thickness, t, to the hydraulic 
line. The plate has to be tuned so that the natural frequency of 
the clamped plate equals the excitation frequency. Exceeding 
the maximum permissible stress of the plate material must be 
avoided [1]. Mikota [1] noted that the plate has to be large and 
bulky at high pressures and low frequencies. 

Different dampers for hydraulic systems have been 
developed and presented in the literature, but a Helmholtz 
resonator, familiar from acoustics, was chosen for this study. 
Because hydraulics and acoustics are similar in nature, basic 
knowledge and measurement results from the field are 
available. The benefits of the Helmholtz resonator, if 
compared with the aforementioned dampers, are size, 
temperature stability and adjustability. As presented, the T-
filter, in-line chamber resonator and plate-based compensator 
are longer or bigger if low frequencies are damped. The 
pressure accumulator and compensator based on plate 
elements are based on mechanical movement, which generates 
heat during continuous use. A Helmholtz resonator is also 
easier to adjust or adapt than is a pressure accumulator or a 
plate-based compensator. 

A Helmholtz resonator in hydraulics has been studied by [1, 
2, 4 5, 6]. Viersma [2] studied a Helmholtz resonator in 
hydraulics in his book, which serves as a basis for all studies 
in the field. Kiesbauer [4] studied the dynamics of a hydraulic 
line in his dissertation. He presents different kinds of dampers, 
such as a line resonator (Reihenresonator), a branch resonator 

(Abzweigresonator), a pipe resonator (Pfeifenresonator), a 
Helmholtz resonator, a hydropneumatic damper, multiple 
resonators (Mehrkammer-Resonator) and an active damper. 
The presented resonators and dampers were also simulated 
numerically, but the branch resonator and active damper are 
emphasized in his study, so most of the simulations and 
experiments are done with them. He also presents variable-
volume resonators and examines a variable-volume branch 
resonator more closely. Two different solutions for making 
the volume of the branch resonator variable are discontinuous 
and continuous resonators. The discontinuous resonator was 
executed so that resonators of different sizes were connected 
to the main pipe and they were controlled by valves. The 
continuous resonator was made from a hydraulic cylinder so 
that both sides of the piston were used by controlling them 
with a 4/3 valve. Because of the structure of the adjustable 
cavity, he also studied the effect of seals on the dynamics of 
an adjustable resonator by means of simulations and 
experiments. The properties of the oil used and sound velocity 
in fluid were measured and defined for the experiments. 
Kiesbauer [4] has presented the control of an adaptive side-
branch resonator and has executed simulations and 
experiments using discontinuous resonators to determine 
which combination of resonators is needed to obtain maximal 
attenuation at a certain frequency. The method presented by 
Kiesbauer [4] could also be regarded as calibration. Kiesbauer 
[4] did his study at pressures of 15 bar and 80 bar. In the 
paper written by Mikota [1], a Helmholtz resonator is only 
mentioned and calculations or experiments are ignored. 
Ortwig [5] mentioned a Helmholtz resonator as a special type 
of attenuator, but he did his experiments with other types of 
attenuators. In his dissertation, Ijäs [6] covered the Helmholtz 
resonator and conducted experiments, but the resonant 
frequency of the Helmholtz resonator was constant. 

II. ANALYTICAL MODEL 
 

A time domain model can be used to study the interior 
points of a hydraulic pipe. For example, the well-known four-
pole model, which is solved in the frequency domain, can only 
be used to study the end points of the pipe [2]. The time 
domain model is solved by using the wave equation of sound 
pressure, which gives pressure as a function of time at an 
arbitrary point of the main pipe under the exciting unit volume 
flow. The chosen method is familiar from acoustics. 

Time domain models of the main pipe, the Helmholtz 
resonator and the main pipe with the Helmholtz resonator are 
deduced. The dimensions of the pipe and the resonator are 
assumed to be negligible compared with the wavelength, and 
sound is assumed to travel as a plane wave. 

Fig. 5 presents the principle of the experimental device, 
which is also the basis of the analytical model, so that the 
distance between pressure sensors P1 and P2 is studied 
analytically. Thus, both ends of the considered area are 
assumed to be free, whereupon the effect of the piston and 
valves can be neglected. 
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(13) 

 

 
 
Fig. 5 Principle of the experimental device 

 
The plane wave equation due to external volume flow [7] 

 
ψ0(x,t) = Ψ0(x) eiωt, 

 
at point x0 (pressure sensor P1 in Fig. 5) is 
 

)xx(
tA

a
x

Pa
t
P

P
02

0
22

2

2
2

2

2
−

∂

∂
⋅=

∂

∂
−

∂

∂ δ
ψρ , 

 
where P is pressure, t is time, a is sound velocity, ρ is density, 
AP is the cross-sectional area of the main pipe and δ is Dirac’s 
delta function. Remember the assumptions of the free ends. 
The solution for harmonic vibration is 
 

P(x,t) = P(x) eiωt, 
 
and the boundary conditions of the free ends are 
 

0=
∂x

)t,x(P . 

 
Thus, the k:th natural frequency of the main pipe is 

 

ωk = k 
L
aπ , 

 
and its eigenfunction is 
 

Pk(x) = sin(k
L
aπ ), 

 
where L is the distance between the measurement points; see 
Fig. 5. 

The orthogonality of the eigenfunction (8) can be presented 
with the help of two eigenfunctions of natural frequencies k 
and h, respectively. 
 

Pk’’(x) + 2

2

a
kω  Pk(x) = 0, 

 

Ph’’(x) + 
2

2

a
hω

 Ph(x) = 0. 

 
Thus, the orthogonality of the eigenfunction (8) can be 

presented as 
 

∫ =
L

hk dxPP
0 ⎪⎩

⎪
⎨
⎧

=

≠

hk ,L
hk ,

2

0
. 

 
The solution of equation (4) is given by the series of 

eigenfunctions as  

P(x,t) = P(x) eiωt = ∑
∞

=1k
kk PÖ  eiωt. 

The unknown coefficient Ök is determined by substituting 
equation (12) for equation (4) and noting the orthogonality of 
the eigenfunction. Thus, the solution of (12) can be presented 
as 
 

P(x) = )x(L)(A

)x(P)x(Pa

k kP

kk
0

1 22

0
22

2

Ψ
ωω

ωρ∑
∞

= −
= G(x,x0) Ψ0, 

where G(x,x0) is Green’s function, which gives the pressure P 
at x under the excitation unit volume flow at x0. 

The pressure in the main pipe without a Helmholtz 
resonator was solved above. Next, the effect of a Helmholtz 
resonator is added to the model. The fluid in the neck of the 
resonator is assumed to move as a unit of constant mass 
without any losses if the length of the neck is short compared 
to the wavelength. The fluctuating pressure in the cavity is 
given as 
 

Pc = 
c

n

V
zAa 2ρ

− , 

 
where An is the cross-sectional area of the neck, z is the 
displacement of fluid in the neck and Vc is the volume of the 
cavity. The volume flow in the neck can be presented as 
 

ψn = An z. 
 
The equation of motion of the fluid in the neck is 

 

ρ An ln 2

2

dt
zd = An (Pc – P(xr,t)), 

 
where ln is the length of the neck of the resonator and P(xr,t) is 
the pressure in the main pipe below the neck of the Helmholtz 
resonator; see Fig. 5. By eliminating z from equations (15) and 
(16), the following pressure equation is obtained 
 

nc

nc

lV
aA

dt
Pd 2

2

2
+ (Pc – P(xr,t)) = 0. 

 
The resonant frequency of the Helmholtz resonator can be 

solved if the pressure in the main pipe below the neck, P(xr,t), 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(14) 

(15) 

(16) 

(17) 
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is assumed to be zero. Thus, the resonant frequency of the 
Helmholtz resonator is 
 

ωHR = 
cn

n

Vl
A

a . 

 
The harmonic volume flow from the neck to the main pipe 

is 
 

ψn = An z eiωt = Ψn eiωt, 
 
where Ψn is the amplitude of the harmonic volume flow. If the 
pressure equation (17) is solved for 
 

Pc = Pc eiωt, 
 
and for 
 

P(xr,t) = P(xr) eiωt, 
 
and equations (18) and (19) are noted, the relationship 
between the pressure and the volume flow is obtained 
 

P(xr) = 
n

n

A
l ρ (ω2 – ωHR

2) Ψn = Χ Ψn, 

 
where xr is the position of the resonator. 

The differential equation of flow from the resonator is 
solved by substituting equation (14) for equation (16) and 
noting equation (19) 
 

)t,x(P
l

A
dt

d
r

n

n
nHR

n

ρ
Ψω

Ψ
−=+ 2

2

2
. 

 
The wave equation of the main pipe with volume flows 

from two sources (primary excitation at x0 and the resonator at 
xr) can be presented as 
 

)]xx(
dt

d)xx(
dt

d[
A
a

x
Pa

t
P

r
n

r
P

−+−=
∂
∂

+
∂
∂ δψδψρ

2

2

2
0

22

2

2
2

2

2
.  

                       (24) 
 
Equations (23) and (24) are simultaneous differential 

equations that determine the flow from the Helmholtz 
resonator and the pressure in the main pipe. The solution of 
equation (24) is (note equation (13)) 

 
P(x) = G(x,x0) Ψ0 + G(x,xr) Ψn, 

 
and the pressure at x = xr is 

 
P(xn) = G(xr,x0) Ψ0 + G(xr, xr) Ψn. 

 

The flow is solved from equations (22) and (26) by 
eliminating P 
 

Ψn = 0
0 Ψ

)x,x(G-X
)x,x(G

rr

r . 

 
The pressure at an arbitrary point, x, in the main pipe to 

which the Helmholtz resonator is added can be calculated 
using 
 

P(x)= 0
nn

0nn0nn0

)x,x(G-X
)x,x(G)x,x(G)x,x(G)x,x(G)x,x(GX
Ψ

+− , 

(28) 
 
which is obtained by substituting equation (27) for equation 
(25). 

First it should be noted that the modelled results do not 
agree with hydraulics if the pressure responses of the whole 
pipe are considered, as presented in Figs. 6 and 7. Fig. 6 
presents the pressure in the main pipe. The result is obtained 
by solving the continuity equation (29) and the equation of 
motion (30) using the method of characteristics. The 
continuity equation is 
 

t
P

B ∂
∂1 = -

x
u
∂
∂ , 

 
where B is the bulk modulus and u is flow velocity. The 
equation of motion is 
 

ρ
t
u
∂
∂ = -

x
P
∂
∂ - u

r
ufD

24
ρ , 

 
where ρ is density, fD is Darcy’s friction factor and r is radius. 
 

 
 
Fig. 6 Iterated pressure in the main pipe without the Helmholtz 
resonator. The length of the node is L/N-1 and the first and last nodes 
are ignored from the results because those nodes are affected by the 
boundary conditions 
 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(25) 

(26) 

(27) 

(29) 

(30) 
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Fig. 7 Sound pressure in the main pipe without the Helmholtz 
resonator 

 
Fig. 6 includes two cases, viscous and non-viscous. The 

response with viscosity agrees better with the measurements. 
However, both results are presented because the effect of 
viscosity is ignored in the sound pressure calculations, too. 
Although the method of characteristics describes the hydraulic 
system better, it is ignored because the results must be 
iterated. Iteration takes time and convergence can not be 
guaranteed every time. Thus, control systems can not be 
modelled reliably by using the method of characteristics. Also, 
sound pressure should be iterated if the effect of viscosity 
were to be included in the model. For example, Matsuhisa et 
al. [7] used the Adams method to numerically solve the 
damped sound pressure. 

Although the sound pressure in the whole main pipe does 
not agree with the hydraulic model, the sound pressure 
equation can be used to model the hydraulic system if a 
certain point in the main pipe is considered, as presented in 
Figs. 8 and 9. Fig. 8 presents the hydraulic pressure at node 7, 
which is point x = 1.03 m in the experimental device. Fig. 9 
presents sound pressure in the main pipe of the experimental 
device at the 1.03 m point. As can be noted, the results are 
similar if a certain point is considered at a time. Thus, the 
experimental device can be modelled by using the presented 
sound pressure model if the effect of the resonator is 
considered at a certain point of the main pipe at a time. 

 

 
 
Fig. 8 Hydraulic pressure in the main pipe at the 1.03 m point (node 
7) 

 

 
 
Fig. 9 Sound pressure in the main pipe at the 1.03 m point 
 

Figs. 10 and 11 present the pressure at the 1.03 m position 
in the main pipe without a Helmholtz resonator and with a 
Helmholtz resonator whose resonant frequency is 23.4 Hz, 
respectively. Four different excitation frequencies are 
presented in each case: 5, 15, 23.4 and 35 Hz. The transition 
between frequencies is presented strictly stepwise to pack the 
results in the same plot. The transition would be continuous in 
the real world. As Figs. 10 and 11 indicate, the Helmholtz 
resonator lowers the amplitude of vibration at every 
frequency, but the best efficiency is reached at its resonant 
frequency. 

 

 
 

Fig. 10 Pressure at the 1.03 m point in the main pipe 
 

 
 
Fig. 11 Pressure at the 1.03 m point in the main pipe which also has a 
Helmholtz resonator at the same point 
 

III. DESIGN OF THE ADAPTIVE HELMHOLTZ 
RESONATOR 
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Fig. 12 presents the adaptive Helmholtz resonator and the 
hydraulic cylinder that moves the piston inside the adaptive 
Helmholtz resonator, and Fig. 13 presents the principle of the 
adaptive Helmholtz resonator. The Helmholtz resonator was 
made of a hydraulic cylinder whose inner diameter was 
100 mm. The resonant frequency of the adaptive Helmholtz 
resonator was controlled by a piston inside the resonator, so 
that the length of the cavity could be changed continuously 
between 0.043 and 0.243 m. 

 

 
 
Fig. 12 Helmholtz resonator (below) and the hydraulic cylinder 
(white, above) used to adjust the piston position inside the resonator 
 

 
 
Fig. 13 Principle of an adaptive Helmholtz resonator for hydraulics 

 
As presented in equation (18), the resonant frequency of the 

Helmholtz resonator is defined by sound velocity and the 
dimensions of the neck and cavity. All the mechanical 
dimensions can be measured reliably. Despite this, sound 
velocity in a fluid is a sensitive parameter, which is affected 
by, among others things, pressure and temperature, so that its 
value should be measured instead of using the value presented 
in theory. A low-pressure hydraulic system, in particular, may 
contain air (dissolved or entrained), in which case the 
effective bulk modulus, and thereby sound velocity, is lower 
than that presented in theory, because the value presented in 
theory is often defined in a pure fluid (no air or other 
components). Thus, sound velocity in the main pipe of the 
experimental device was measured using the impact test, and 
the results are presented in a previous paper [8]. 

The resonant frequencies of the adaptive Helmholtz 
resonator as a function of piston position were measured and 
the results are presented in paper [9]. As presented in paper 
[9], the measured frequencies do not agree with the 
analytically calculated results. Because the other factors of 
equation (18) are noted to be reliable, the measured sound 
velocity in the main pipe must differ from the sound velocity 
of the whole system. This deviation is caused by air content, 
because the total volume and thereby the amount of air was 

increased after the Helmholtz resonator was added to the 
system. The low pressure and the geometry of the 
experimental device, especially the geometry of the resonator, 
enable hydraulics to contain air bubbles or even air pockets 
inside the system. Because air is softer than oil, the effective 
stiffness of the system decreases as the amount of air 
increases. The amount of air in the system was estimated by 
calculating the effective bulk modulus of the system 
 

Beff = 
n

cn

A
Vlf 224π

ρ , 

 
where f is the measured resonant frequency and VC is the 
volume of the cavity. After the effective bulk modulus of the 
system was calculated, the amount of air could be estimated 
from equation 
 

airtot

air

ntot

n

ptot

p

ctot

c

fluideff BV
V

BV
V

BV
V

BV
V

BB
111111

++++=  (32) 

 
where Bfluid is the bulk modulus of the fluid (defined by the 
impact test [6]), Vtot is the total volume of the system, Vp is the 
volume of the main pipe, Bp is the bulk modulus of the main 
pipe, Vn is the volume of the neck, Bn is the bulk modulus of 
the neck, Vair is the volume of air and Bair is the bulk modulus 
of air (1.4*P).  

Up to 1 % of the total volume of the hydraulics of the 
experimental device was noted to be air. The amount of air 
varied with pressure and the volume of the cavity. Thus, it 
was estimated that the effective bulk modulus of the 
hydraulics of the experimental device was 140 MPa if the 
pressure was 0.3 MPa. The estimated value was used in 
modelling, as presented in Figs. 10 and 11. 

IV. CONTROL 
 
The purpose of the study was to develop an adaptive 

dynamic vibration absorber for a hydraulic system so that the 
harmonic pulsating pressure can be damped out even though 
its frequency varies. A Helmholtz resonator, which changes its 
properties automatically so that its resonant frequency always 
corresponds with the excitation frequency, was chosen as an 
absorber. The length of the cavity of the Helmholtz resonator 
was changed so that the resonant frequency of the resonator 
varied. The length of the cavity was controlled with both 
open- and closed-loop controls so that the outlet pressure of 
the main pipe remained stable even though the excitation 
frequency of the inlet pressure varied. The principles of the 
control methods are presented in Fig. 14. 

An open-loop control was the first control method. A 
pressure sensor, P1 in Fig. 5, was used to identify the 
disturbing frequency. The identified disturbing frequency was 
compared with the frequencies presented in a control list 
compiled beforehand so that the optimal piston position was 

(31) 
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found. The control list included frequency – piston position 
pairs and the control programme checked from there the 
correct piston position by comparing the identified 
frequencies with the frequencies presented in the list. After the 
piston was in the correct position, maximum attenuation of the 
pulsating pressure in pressure sensor P2 was reached. 

 

 
 

Fig. 14 Block diagrams of the open-loop and closed-loop controls, 
respectively 

 
The closed-loop control moved the piston 0.015 m (note the 

safety margins (0.005 m) at both ends of the cavity) or 
0.020 m at a time and checked the corresponding p-p value of 
the pressure from pressure sensor P2 between movements; see 
Fig. 5. This procedure was repeated until the whole adjusting 
range was checked. Then the piston returned to the position 
wherein the smallest p-p value was observed. This position 
was kept until the p-p value of the pulsating pressure 
exceeded 17.5 kPa. 

Fig. 15 presents the efficiency of the adaptive Helmholtz 
resonator in the time domain. Two measurements are scaled to 
the same figure. The first one is measured without a 
Helmholtz resonator and the second one with a Helmholtz 
resonator at pressure sensor P2; see Fig. 5. The excitation 
frequency is 31.7 Hz in both cases. 

 

 
Fig. 15 Measured pressures at pressure sensor P2 
 

The adjusting frequency range was noted to be narrower 
than expected (24 Hz) and attenuation of 20 dB was reached 
only between the frequencies of 34.2 and 38 Hz during the 
open loop experiments. The difference between what was 
expected and the experiments was caused by temperature 
variation and dissolution of air. The temperature of the 
hydraulic oil varied between 20 and 22˚C when the values of 
the control list were defined. However, the temperature of the 
hydraulic oil rose from 20 to 24˚C during the open loop 
experiments. The deviation between theory and experiments 
increased more when the system warmed up from the planned 
temperature, so that at a temperature of 24˚C only 17 dB 
attenuation of the p-p value of pressure was reached. The rise 
in temperature also changes the bulk modulus of the fluid, so 
the resonant frequency of the Helmholtz resonator also varies 
and the viscosity decreases, which decreases inertial damping 
in which case the attenuation range narrows. Also, the amount 
of air inside the experimental device may vary during long-
term experiments, so that the effective bulk modulus of 
hydraulics varies a little bit all the time. Thus, the open-loop 
control is very case-specific and operates reliably only in a 
stabile system. In addition, an accurate open-loop control 
cannot be based on calculations; calibration measurements are 
needed before start-up. 

The measured maximum attenuations varied from 19 to 
20 dB at pressure sensor P2 when the closed-loop control was 
used. Once again, the adjusting range was noted to vary as the 
experiments continued and oil temperature varied. However, 
the closed-loop control maintained at least -19 dB attenuation 
of the pulsating pressure if the excitation frequency was inside 
the adjusting range, even though the temperature varied 
between 21 and 29˚C during the experiments. Maximum 
attenuation was achieved between the frequencies of 35.6 and 
46.4 Hz. 

The reason for the variations in oil temperature was the 
hydraulic pump unit, whose small oil tank was positioned 
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around the pump and the electric motor, so that they warmed 
up the oil. The loading of the oil was also increased by using a 
strict pressure control circuit. In addition, variations in the 
measured responses were noted to be hysteretic in nature, so 
that the original starting point was not reached even though 
the system was cooled down. The responses were returned to 
the initial stage only by changing the oil in the experimental 
device. The oil properties started to vary again after the 
experiments were continued, despite the oil change. This 
phenomenon was caused by air bubbles and pockets that 
accumulated in certain points of the experimental device every 
time despite deaeration through the bleeding screws. 
Continuous usage of the experimental device (flow) slowly 
dissolved the entrained air from the device so that the 
effective stiffness of the experimental device increased until 
the initial stage was returned by changing the oil. 

In hydraulics, the effect of the volume change of the 
resonator (piston movement) has to be taken into account the 
whole time. Sharp and fast changes might break the system 
(for example its pressure sensors). Anyway, a change in 
volume causes pressure variation in the system, and the 
measured p-p values of pressure fluctuate during piston 
movement and stability is not reached until the piston has 
been stopped. 

V. CONCLUSIONS 
 
The main objective of the study was reached and the p-p 

value of the pulsating pressure was attenuated 20 dB by the 
adaptive Helmholtz resonator when compared with the 
measured p-p values without the Helmholtz resonator. The 
measured attenuation, 20 dB, is similar to the results of other 
studies of ADVAs or Helmholtz resonators. For example, de 
Bedout et al. [10] reduced the pressure level 30 dB in an 
acoustic system by using a controlled tunable resonator, Singh 
et al. [11] measured 18 dB attenuation in net acoustic power 
transmission in a duct downstream from a Helmholtz 
resonator and Franchek et al. [12] measured 24 dB(A) 
maximum reduction in vibration in four-degrees-of-freedom 
test equipment with an adaptive absorber, and 17.2 dB(A) 
reduction was measured during the entire test period. Their 
damper consisted of a mass and a helical spring, whose 
number of active coils was changeable. 

The presented open-loop control is fast and reliable as long 
as the system or environment remains constant so that 
properties like pressure or temperature do not vary from the 
state of calibration. Variations in the system or environment 
can be taken into account by making different control lists for 
different conditions, but it should be remembered that the 
DVA can act as an amplifier if it is untuned. The chosen open-
loop control would be workable in mill conditions, wherein 
the properties of the system and surroundings are stabile 
during operation. 

The presented closed-loop control is slow but reliable as 
long as the disturbing frequency is inside the adjusting range 
of the Helmholtz resonator. The closed-loop control 

independently finds, without any controlling list, the optimal 
piston position to attenuate the p-p value of pulsating 
pressure. The presented control also notices variations in the 
system or surroundings so that re-adjusting can be done. The 
slowness of the presented control could be avoided by helping 
the control, for example with phase-difference-based 
directional control, so that the piston could be moved in an 
optimal direction without moving through the whole adjusting 
range. However, as noted in the experiments, it would not be 
beneficial to the performance of the hydraulic system if the 
properties of the resonator were to change continuously, 
because every time the volume of the cavity is varied, 
differences in the pressure level are caused. Thus, changes in 
the system would be difficult to identify rapidly. 

The peak-to-peak value was chosen in this study to 
represent the condition of the system and surroundings 
because it is affected by several factors of the system and 
surroundings. Thus, this kind of control is suitable for various 
applications, even in outdoor locations wherein conditions 
might vary. However, the system properties have to be inside 
the adjusting range the whole time. 

The usability of the Helmholtz resonator could be increased 
if an electrically controlled valve could be installed between 
the main pipe and the Helmholtz resonator. This feature would 
widen the range of applications where Helmholtz resonators 
could be used. The possibility of disconnecting or connecting 
a resonator to a hydraulic system would be a useful function 
because the addition of a resonator to a hydraulic system 
increases the volume of the hydraulic system. However, 
increased volume means increased mass, which is not always 
a desirable feature. Thus, easy connectivity of the resonator 
would be a good feature, especially if emptying of the 
Helmholtz resonator could be implemented.  
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