**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31103

##### Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation

**Authors:**
Raoudha Chaabane,
Faouzi Askri,
Sassi Ben Nasrallah

**Abstract:**

**Keywords:**
heat generation,
cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1056226

**References:**

[1] S. Succi, The Lattice Boltzmann Method for Fluid Dynamics and Beyond, Oxford University Press, (2001).

[2] R. Benzi, S. Succi, M. Vergassola, The lattice Boltzmann equation: theory and applications Authors, Phys. Rep. 222 (1992) 145-197.

[3] F.J. Higuera, S. Succi, R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. 9 (1989) 345-349.

[4] X. Shan, Simulation of Rayleigh-Benard convection using a lattice Boltzmann method, Phys. Rev. E 55 (1977) 2780-2788.

[5] F.J. Higuera, J. Jiménez, Boltzmann approach to lattice gas simulations, Europhys. Lett. 9 (1989) 663-668.

[6] F. Massaioli, R. Benzi, S. Succi, Exponential tails in two-dimensional Rayleigh-Bénard convection, Europhys. Lett. 21 (1993) 305-310.

[7] S. Chen, G.D. Doolen, Lattice Boltzamann method for fluid flows, Ann. Rev. Fluid Mech. 30 (1998) 329-364.

[8] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys. 146 (1998) 282-300.

[9] D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer-Verlag, Berlin- Heidelberg, (2000).

[10] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, D. Joseph, The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiphase Flow 29 (2003) 117-169.

[11] Menguc- MP, Viskanta R. Radiative transfer in axisymmetric finite cylindrical enclosures. J Heat Transfer 1986;108:271-6.

[12] Yin Z, Jaluria Y. Zonal method to model radiative transport in an optical fiber drawing furnace. J Heat Transfer 1997;119:597-603.

[13] Kaminski DA. Radiative transfer from a gray, absorbing emitting, isothermal medium in a conical enclosure. J Sol Energy Eng 1989;111:324-9.

[14] Fernandes R, Francis J. Combined conductive and radiative heat transfer in an absorbing, emitting and scattering cylindrical medium. J Heat Transfer 1982;104:594-601.

[15] Nunes EM, Modi V, Naraghi MHN. Radiative transfer in arbitrarilyshaped axisymmetric enclosures with anisotropic scattering media. Int J Heat Mass Transfer 2000;43:3275-85.

[16] Sutton WH, Chen XL. A general integration method for radiative transfer in 3D non-homogeneous cylindrical media with anisotropic scattering. JQSRT 2004;84:65-103.

[17] Chen XL, Sutton WH. Radiative transfer in finite cylindrical media using transformed integral equations. JQSRT 2003;77:233-71.

[18] Cui X, Li BQ. Discontinuous finite element solution of 2D radiative transfer with and without axisymmetry. JQSRT 2005;96:383-407.

[19] Ruan LM, Xie M, Qi H, An W, Tan HP. Development of a finite element model for coupled radiative and conductive heat transfer in participating media. JQSRT 2006;102:190-202.

[20] Carlson BG, Lathrop KD. Transport theoryÔÇöthe method of discreteordinates. In: Computing methods in reactor physics. New York: Gordon and Breach; 1968.

[21] Fiveland WA. A discrete ordinates method for predicting radiative heat transfer in axisymmetric enclosure. ASME 1982;82-HT-20.

[22] Jamaluddin AS, Smith PJ. Predicting radiative transfer in axisymmetric cylindrical enclosures using the discrete ordinates method. Combust Sci Technol 1988;62:173-86.

[23] Li HY, Ozisik MN, Tsai JR. Two-dimensional radiation in a cylinder with spatially varying albedo. AIAA J Thermophys Heat Transfer 1991;6:180-2.

[24] Jamaluddin AS, Smith PJ. Discrete-ordinates solution of radiative transfer equation in nonaxisymmetric cylindrical enclosures. J Thermophys Heat Transfer 1992;6:242-5.

[25] Beak SW, Kim TY, Lee JS. Transient cooling of a finite cylindrical medium in the rarefied cold environment. Int J Heat Mass Transfer 1993;36:3949-56.

[26] Baek SW, Kim MY. Modification of the discrete ordinates method in an axisymmetric cylindrical geometry. Numer Heat Transfer (B) 1997;31:313-26.

[27] Baek SW, Kim MY. Analysis of radiative heating of a rocket plume base with the finite volume method. Int J Heat Mass Transfer 1997;40:1501-8.

[28] Rousse D, Baliga R. Formulation of a control volume finite element method for radiative transfer in participating media. In: Proceedings of the seventh international conference on numerical methods thermal problems, Stanford, 1991. p. 95-786.

[29] Ben Salah M, Askri F, Rousse D, Ben Nasrallah S. Control volume finite element method for radiation. JQSRT 2005;92:9-30.ARTICLE IN PRESS

[30] Grissa H, Askri F, Ben Salah M, Ben Nasrallah S. Three-dimensional radiative transfer modeling using the control volume finite element method. JQSRT 2007;105:388-404.

[31] Ben Salah M, Askri F, Ben Nasrallah S. Unstructured control volume finite element method for radiative heat transfer in a complex 2Dgeometry. Numer Heat Transfer (B) 2005;48:1-21.

[32] Asllanaj F, Feldhemi V, Lybaert P. Solution of radiative heat transfer in 2-D geometries by a modified finite volume method based on a cell vertex scheme using unstructured triangular meshes. In: Proceedings of the Eurotherm 78 on computational thermal radiation in participating media, 2006.

[33] H. Grissa, F. Askri, M. Ben Salah, S. Ben Nasrallah, Journal of Quantitative Spectroscopy &Radiative Transfer 109 (2008) 494-513, Nonaxisymmetric radiative transfer in inhomogeneous cylindrical media with anisotropic scattering

[34] Rousse D. Numerical predictions of two-dimensional conduction, convection, and radiation heat transfer. I. Formulation. Int J Thermal Sci 2000;39:315-31.

[35] Rousse D. Numerical predictions of two-dimensional conduction, convection, and radiation heat transfer. II. Validation. Int J Thermal Sci 2000;39:332-53.

[36] Ben Salah M, Askri F, Jemni A, Ben Nasrallah S. Numerical analyses of radiative heat transfer in any arbitrarily-shaped axisymmetric enclosures. JQSRT 2006;97:395-414.

[37] J.C. Chai, H.S. Lee, S.V. Patankar. Finite volume method for radiation heat transfer. J Thermophys Heat Transfer (1994) 8(3).

[38] K.-H. Wu, C.-Y. Wu, transient two-dimensional radiative and conductive heat transfer in an axisymmetric medium, heat and mass transfer 33 (1998) 327-331. springer-Verlag 1998.

[39] R. Chaabane, F. Askri, S.B. Nasrallah, A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems, Journal of thermal science.

[40] Raoudha CHAABANE, Faouzi ASKRI, Sassi Ben NASRALLAH, «Analysis of two-dimensional transient conduction-radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method», Journal of Computer Physics Communications.

[41] Raoudha CHAABANE, Faouzi ASKRI, Sassi Ben NASRALLAH, «Parametric study of simultaneous transient conduction and radiation in a two-dimensional participating medium», Communications in Nonlinear Science and Numerical Simulation (2011).

[42] Raoudha CHAABANE, Faouzi ASKRI, Sassi Ben NASRALLAH, «Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media», J. Quantitative Spectroscopy Radiative Transfer.