
Abstract—Simultaneous transient conduction and radiation heat
transfer with heat generation is investigated. Analysis is carried out
for both steady and unsteady situations. two-dimensional gray
cylindrical enclosure with an absorbing, emitting, and isotropically
scattering medium is considered. Enclosure boundaries are assumed
at specified temperatures. The heat generation rate is considered
uniform and constant throughout the medium. The lattice Boltzmann
method (LBM) was used to solve the energy equation of a transient
conduction-radiation heat transfer problem. The control volume finite
element method (CVFEM) was used to compute the radiative
information. To study the compatibility of the LBM for the energy
equation and the CVFEM for the radiative transfer equation, transient
conduction and radiation heat transfer problems in 2-D cylindrical
geometries were considered. In order to establish the suitability of the
LBM, the energy equation of the present problem was also solved
using the the finite difference method (FDM) of the computational
fluid dynamics. The CVFEM used in the radiative heat transfer was
employed to compute the radiative information required for the
solution of the energy equation using the LBM or the FDM (of the
CFD). To study the compatibility and suitability of the LBM for the
solution of energy equation and the CVFEM for the radiative
information, results were analyzed for the effects of various
parameters such as the boundary emissivity. The results of the LBM-
CVFEM combination were found to be in excellent agreement with
the FDM-CVFEM combination. The number of iterations and the
steady state temperature in both of the combinations were found
comparable. Results are found for situations with and without heat
generation. Heat generation is found to have significant bearing on
temperature distribution.

Keywords—heat generation, cylindrical coordinates; RTE;
transient; coupled conduction radiation; heat transfer; CVFEM; LBM

I. INTRODUCTION

OUPLED transient conduction and radiation in a
participating medium has numerous engineering
applications in a variety of areas such as cylindrical metal-

hydrogen reactor, thermal control by ceramics and low density
refractory material, heat exchangers, manufacturing of glass
and the window exposed to aerodynamic heating, heat pipes,
gas turbine combustors, jet engines, the design of combustion

chambers, rocket propulsion systems, glass manufactures,
energy conservation and fibrous insulation. In this paper, we
consider two dimensional transient conduction and radiation in
a gray, absorbing, emitting, and isotropically scattering finite
solid cylinder. The lattice Boltzmann method (LBM) has been
increasingly applied in a variety of fluid mechanics [1–10], in
simple and complex medium. Its application to heat transfer
problems has been encouraging.  Due to the direct
discretization and the computational simplicity, ability and
efficiency, the lattice Boltzmann method is considered the best
alternative to traditional conventional computational fluid
dynamics (CFD) solvers which basically solve the
macroscopic transport equations of fluid flow, mass and heat
transfer by directly discretizing them. The obtained partial
differential equations are solved by finite difference methods
(FDM), finite volume methods (FVM), etc. LBM is a
mesoscopic approach inheriting many of the advantages of
molecular dynamics and kinetic theories without using use
complicated kinetic equations. The LBM include simple
calculation procedure, efficient implementation for a parallel
architecture, simplicity of boundary condition’s
implementation, easy and robust handling of complex
geometries, and others [1–5]. In addition, the LBM is second-
order accurate in time and space, which is sufficient for most
engineering applications and, makes LBM competitive for
complex medium. The LBM was found to provide accurate
results and compatibilities of the LBM for solution of energy
equation.Recently, numerous methods have been developed to
solve the radiative transfer equation (RTE) in
multidimensional cylindrical configurations. They include the
spherical harmonic method [11], the zone method [12], the
differential approximation method [13], the Galerkin finite
element method [14], the discrete exchange factor method
[15], the exact integral equation solutions [16, 17], the
discontinuous Galerkin finite element method [18] and the
finite element method [19]. The discrete ordinates method
(DOM), originated by Carlson and Lathrop [20], has been
widely used to solve radiative transfer problems in cylindrical
configurations. Fiveland [21] and Jamaluddin and Smith [22]
applied the DOM to combined heat transfer in axisymmetric
geometries. Li et al. [23] studied the effect of albedo on the
radiation in two-dimenional (2D) cylindrical geometry. The
treatment of the radiative transfer in cylindrical enclosure by
the DOM was provided by Jamaluddin and Smith [24]. A
problem of unsteady cooling by conduction and radiation for a
finite cylindrical medium when exposed to a rarefied cold
environment was examined by Beak et al. [25] using the S4
approximation DOM. Many works have studied radiation
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problem in cylindrical enclosures using the finite volume
method (FVM) [26-27]. The control volume finite element
method (CVFEM) has been demonstrated to be successful in
the solution of 2D [28,29] and 3D [30] rectangular enclosures,
as well as for the unstructured mesh [31,32,33], and also for
the solution of combined-mode heat transfer in participating
media [34,35]. CVFEM is particularly a very promising
approach for the solution of radiative transfer problems in
cylindrical geometries. Ben Salah et al. [36] have proved its
accuracy and its computational efficiency in the case of
axisymmetric enclosures.The aim of this work is to combine
the CVFEM which predict the axisymmetric radiative heat
transfer in the cylindrical problem with the LBM and the FDM
used for the corresponding energy equation. To that end, a
benchmark problem dealing with transient conduction
radiation heat transfer in a 2-D axisymmetric cylindrical
enclosure is considered. The results obtained from the LBM-
CVFEM and the FDM-CVFEM combinations are compared
for the effects of various parameters, such as the effects of the
emissivity and the presence of heat generation. The remainder
of this article is divided into three sections. First we present
the mathematical formulation and the relevant equations of the
CVFEM to calculate radiative information required for the
energy equation in the 2-D axisymmetric cylindrical. The
mathematical and numerical formulations for the LBM
approach are well illustrated next. Finally, the effectiveness of
the obtained results associated to the parametric study is
examined in last session.

II. NUMERICAL METHOD

Equation governing unsteady heat transfer in a finite
axisymmetric cylindrical medium, is as follow

gRp qq
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Where is the density, pc is the specific heat, k  is the

thermal conductivity and gq  is the rate of heat generation. Rq
represents the radiative heat flux which given by:

4Rq I d (2)

Where I is the radiative intensity which can be obtained
by solving the Radiative Transfer Equation (RTE).

For an absorbing, emitting and scattering grey medium the
RTE can be written as

'

' ' '
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.( ( , ). ) ( ) ( , ) ( )

( , ) ( )
4

a d a b

d

I s k k I s k I s
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where ( , )I s is the radiative intensity, which is a

function of position s  and direction ; ak  and dk  are

absorption and scattering coefficients, respectively; ( )bI s is

the blackbody radiative intensity at the temperature of the

medium; and '( )P is the scattering phase function from

the incoming ' direction to the outgoing direction . The
term on the left-hand side represents the gradient of the

intensity in the direction . The three terms on the right-hand
side represent the changes in intensity due to absorption and
out-scattering, emission, and in-scattering, respectively. The
radiative boundary condition for Eq. (3), when the wall
bounding the physical domain is assumed grey and emits and
reflects diffusely, can be expressed as

'
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' ' '

. 0
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( ) ( ) .

w

w w w
ww wn

T
I I n d if '. 0wn (4)

Where wn  is the unit normal vector on the wall and

w represents the wall emissivity.

Fig. 1 Cartesian and cylindrical coordinates

Fig. 2 Angular discretization

III. CONTROL VOLUME FINITE ELEMENT METHOD (CVFEM)
FORMULATION

The control volume finite element method has been
demonstrated to be successful in the solution of conductive
radiative transfer in 2-D rectangular enclosures, two-
dimensional participating cylinder [39-42]. In [39-42],

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:5, No:7, 2011 

1428International Scholarly and Scientific Research & Innovation 5(7) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
7,

 2
01

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
98

7.
pd

f



CHAABANE et al. have studied this benchmark problem of
coupled conductive radiative heat transfer and they found that
the CVFEM is accurate and efficient. So , the CVFEM is used
to discretize the RTE.

Fig. 3  Spatial discretization in ( ,r ze e ) plane and  control volume

ikV

The surface l
ikA of a sub-volume l

ikV is formed by four

faces .
In the first, the radiative transfer equation integrated

over both control volume and control solid angle gives:
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To approximate the integrals that represent the
extinction, emission and in-scattering contributions, the
radiation intensity is considered constant within

ikV and mn  and is evaluated at the centroid of the

control volume and at the centre direction of the control
solid angle.

For the term on the left-hand side in eq. 5, the
divergence theorem, the skew positive coefficient up
wind (SPCU), and step schemes are used to cal cu late
the corresponding quantity.

The final algebraic equation of the RTE is given by
the following expression [7]:

( , )
' ' ' '

1 1 2 1 3 1 1
( ', ') (1,1)
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N N
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ik ik ik i k ik i k ik

I I I I

I I I

(6)

Then, the algebraic eq. (6) is writ ten in the following
matrix form [42]

bAI (7)
The obtained matrix sys tem is solved using the
conditioned conjugate gradient squared method (CCGS).
A de tailed calculation can be found in ref. [42]. The
obtained equations are coupled and must be solved
iteratively to yield the radiation and the temperature
fields.

IV. LATTICE BOLTZMANN METHOD (LBM) FORMULATION

The starting point of the LBM is the kinetic equation which
for a two dimensional enclosure is given by [1-10]

( , )
. ( , ) , 0,1, 2,....,8i

i i i

f r t
c f r t i

t
                  (8)

where if is the particle distribution function denoting the

number of particles at the lattice node ( , )r r r z  and time t

moving in direction i  with velocity ic along the lattice link

ir c t  connecting the nearest neighbours. The term i

represents the local change in if  due to particle collisions. For

2-D cylindrical geometry and taking into account the single
time relaxation model of the Bhatanagar–Gross–Krook (BGK)
approximation, the discrete Boltzmann equation is given by

( , ) 1
. ( , ) [ ( , ) ( , )]eqi

i i i i

f r t
c f r t f r t f r t

t
          (9)

where  is the relaxation time and eqf  is the equilibrium

distribution function.

Fig. 5 Boundary conditions with known and unknown
populations.

In heat transfer problems, the relaxation time for the
D2Q9 lattice (Fig. 5) is computed from [5-9]
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3

( ) 2p

k t

c c
                 (10)

After discretization, Eq. (71) can be written as

( , ) ( , ) [ ( , ) ( , )]eq
i i i i i

t
f r c t t t f r t f r t f r t (11)

( , ) ( , )eq
i if r t T r t (12)

In case of heat transfer problems, the temperature is
obtained after summing if  over all direction , i.e,

8

0
),(),(

i i trftrT                               (13)

To incorporate the volumetric radiation in the energy
equation and the axisymmetric configuration, in the LBM
formulation, Eq. (11) gets modified to

(0)( , ) ( , ) [ ( , ) ( , )]

( )( ( ))

i i i i i

i R
p

t
f r c t t t f r t f r t f r t

t T
g div q

c r r

(14)

Eq. (14) is the equivalent form of the energy equation Eq.
(1) in the LBM formulation, taking into account the presence
of the volumetric radiation and the axisymmetric
configuration. The boundary conditions are based on the
properties of the known and unknown populations on each side
as shown on figure 5. To express these conditions the bounce-
back concept in the LBM in which particle fluxes are balanced
at any point on the boundary was used.

V. RESULTS AND DISCUSSION

To illustrate the robustness of the present coupled
formulation LBM-CVFEM and the FDM-CVFEM, we assume
the following test case of cylindrical axisymmetric enclosure.
It consists of a solid cylinder with a height H  and a radius R
containing an absorbing and emitting medium at constant
temperature and with 0.0 and 1.0 . The walls are

black ( 1ε w ). The number of spatial nodes is fixed on

( , ) (17,33)r zN N and the number of control angles

is )8,6(),( ψθ NN . In the used new hybrid numerical

approach, non-dimensional time step
4 210 ( / )k t Cp was considered and steady-

state condition was assumed to have been achieved when the
maximum variation in temperature at any location between two
consecutive time levels satisfies the following

constraint 410mn oldmn
ik ik . In the test problem

considered here, it is assumed that the bottom surface of the
cylinder is hot and kept at a dimensionless temperature

b refT T   of unity, the inner cylindrical surface is kept

insulated, and the remaining surface are kept at  temperature

/ 2i bT T . We now present numerical results to demonstrate

the effects of the conduction radiation parameter N , scattering

albedo , asymmetry factor, and extinction coefficient  on

temperature distribution and heat transfer. The surface
emissivity plays an important role in the transport phenomena
with regard to the contribution from surface radiation and
during mathematical modeling it appears in the nonlinear
boundary condition. So, the LBM-CVFEM and the FDM-
CVFEM dimensionless mid-plane ( / 0.5r R ) temperature
results are compared in figure 6a-b  for the effect of surface
emissivity (ε). In figure 6, results have been compared for

(a) 1 0.1 , (b) 1 1.0  and 2 3 1.0 . For these

results 0.10N , 1.0 and 0.0 . For the same

parameters, dimensionless mid-plane ( / 0.5z H )
temperature results are compared in figure 7a-b  for the effect
of surface emissivity (ε). It is observed from figure 6 and 7 that
with increase in emissivity, both the radiative transfer and core
temperature increases as obvious. In this benchmark we notice
that, in the vicinity of the hot surface and the cold surface the
temperature increases with the increase of the emissivity. The
effects of the reflection effects are pronounced both in vicinity
of the cold and hot surface. Table I highlight the number of
iterations required to obtain steady-state dimensionless

temperature / refT T with FDM-CVFEM and LBM-CVFEM,

for different dimensionless heat generation parameter *g . In

the present case, results of the FDM-CVFEM are in excellent
agreement with the LBM-CVFEM results.

TABLE I
COMPARISON OF THE NUMBER OF ITERATIONS REQUIRED TO OBTAIN STEADY-

STATE DIMENSIONLESS TEMPERATURE WITH FDM-CVFEM AND LBM-

CVFEM, WITH ( 1.0 , 0.5 , 0.1N ) FOR DIFFERENT *g
*g r/R = 0.50, z/H = 0.5 r/R = 0.75, z/H = 0.5

FDM-
CVFEM

LBM-
CVFEM

FDM
CVFEM

LBM
-CVFEM

0 0.658 (955) 0.656 (948) 0.574 0.572

2 0.785 (1119) 0.784 (1116) 0.689 0.689
5 0.94 (1172) 0.945 (1170) 0.841 0.841
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Fig. 6 Comparison of dimensionless mid-plane ( / 0.5r R )

temperature for 0.10N , 1.0 , 0.0 ,

(a) 1 0.1 ,(b) 1 1.0   and 2 3 1.0

VI. CONCLUSION

In this paper, the lattice Boltzmann method-control volume
finite element method (LBM-CVFEM) is successfully applied
to solve and analyse the transient combined conductive
radiative heat transfer problem in an axisymmetric cylindrical
geometry with absorbing, emitting and scattering medium. To
compare the performance and the workability of the LBM-
CVFEM hybrid method, the problems were also solved using
the FDM-CVFEM combinations. The present work provides a
solution of the heat transfer in a cylindrical enclosure with
black or gray diffuse emitting and reflecting walls containing
an absorbing–emitting–scattering medium. The CVFEM
model was applied to study the influence of wall emissivity
and heat generation on the temperature distribution in the
emitting–absorbing–scattering medium. The obtained results
show that the present coupled CVFEM with the LBM could
not only predict the coupled transient radiative conductive heat
transfer in participating media accurately but also be flexible
in treating problems with more complicated geometries.
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