Search results for: Artificial Neural Network.
1639 Complex Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25451638 Detection of Black Holes in MANET Using Collaborative Watchdog with Fuzzy Logic
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
Mobile ad hoc network (MANET) is a self-configuring network of mobile node connected without wires. A Fuzzy Logic Based Collaborative watchdog approach is used to reduce the detection time of misbehaved nodes and increase the overall truthfulness. This methodology will increase the secure efficient routing by detecting the Black Holes attacks. The simulation results proved that this method improved the energy, reduced the delay and also improved the overall performance of the detecting black hole attacks in MANET.
Keywords: MANET, collaborative watchdog, fuzzy logic, AODV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511637 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages
Authors: Hock Chuan, Lim
Abstract:
This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.
Keywords: Blended learning, network science, social learning, social network analysis, study environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6581636 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13881635 Performance Assessment and Optimization of the After-Sale Networks
Authors: H. Izadbakhsh, M.Hour Ali, A. Amirkhani, A. Montazeri, M. Saberi
Abstract:
The after–sales activities are nowadays acknowledged as a relevant source of revenue, profit and competitive advantage in most manufacturing industries. Top and middle management, therefore, should focus on the definition of a structured business performance measurement system for the after-sales business. The paper aims at filling this gap, and presents an integrated methodology for the after-sales network performance measurement, and provides an empirical application to automotive case companies and their official service network. This is the first study that presents an integrated multivariate approach for total assessment and improvement of after-sale services.Keywords: Data Envelopment Analysis (DEA), Principal Component Analysis (PCA), Automotive companies, After-sale services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18851634 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data
Authors: A. Starczewska, A. Nawrat, K. Daniec, J. Homa, K. Hołda
Abstract:
Border Gateway Protocol (BGP) is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.
Keywords: Border Gateway Protocol, BGP, BGP hijacking, cybersecurity, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931633 Distributed e-Learning System with Client-Server and P2P Hybrid Architecture
Authors: Kazunari Meguro, Shinichi Motomura, Takao Kawamura, Kazunori Sugahara
Abstract:
We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and a function are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In this system, all computers offer the function and exercise by themselves. However, the system that all computers do the same behavior is not realistic. In this paper, as a solution of this issue, we present an e-Learning system that is composed of computers of different participation types. Enabling the computer of different participation types will improve the convenience of the system.Keywords: Distributed Multimedia Systems, e-Learning, P2P, Mobile Agen
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391632 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees
Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart
Abstract:
In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.
Keywords: Personnel assessment, ANP (analytic network process), two-way.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7891631 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation
Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf
Abstract:
Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.
Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23051630 Patronage Network and Ideological Manipulations in Translation of Literary Texts: A Case Study of George Orwell's “1984” in Persian Translation in the Period 1980 to 2015
Authors: Masoud Hassanzade Novin, Bahloul Salmani
Abstract:
The process of the translation is not merely the linguistic aspects. It is also considered in the cultural framework of both the source and target text cultures. The translation process and translated texts are confronted the new aspect in 20th century which is considered mostly in the patronage framework and ideological grillwork of the target language. To have these factors scrutinized in the process of the translation both micro-element factors and macro-element factors can be taken into consideration. For the purpose of this study through a qualitative type of research based on critical discourse analysis approach, the case study of the novel “1984” written by George Orwell was chosen as the corpus of the study to have the contrastive analysis by its Persian translated texts. Results of the study revealed some distortions embedded in the target texts which were overshadowed by ideological aspect and patronage network. The outcomes of the manipulated terms were different in various categories which revealed the manipulation aspects in the texts translated.
Keywords: Critical discourse analysis, ideology, translated texts, patronage network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871629 Automatic Choice of Topics for Seminars by Clustering Students According to Their Profile
Authors: J.R. Quevedo, E. Montañés, J. Ranilla, A. Bahamonde
Abstract:
The new framework the Higher Education is immersed in involves a complete change in the way lecturers must teach and students must learn. Whereas the lecturer was the main character in traditional education, the essential goal now is to increase the students' participation in the process. Thus, one of the main tasks of lecturers in this new context is to design activities of different nature in order to encourage such participation. Seminars are one of the activities included in this environment. They are active sessions that enable going in depth into specific topics as support of other activities. They are characterized by some features such as favoring interaction between students and lecturers or improving their communication skills. Hence, planning and organizing strategic seminars is indeed a great challenge for lecturers with the aim of acquiring knowledge and abilities. This paper proposes a method using Artificial Intelligence techniques to obtain student profiles from their marks and preferences. The goal of building such profiles is twofold. First, it facilitates the task of splitting the students into different groups, each group with similar preferences and learning difficulties. Second, it makes it easy to select adequate topics to be a candidate for the seminars. The results obtained can be either a guarantee of what the lecturers could observe during the development of the course or a clue to reconsider new methodological strategies in certain topics.Keywords: artificial intelligence, clustering, organizingseminars, student profile
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13671628 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761627 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data
Authors: Wann-Ming Wey
Abstract:
In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.
Keywords: Adaptive reuse, analytic network process, big data, land use strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9211626 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications
Authors: A. Andreasyan, C. Connors
Abstract:
The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.
Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6041625 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network
Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem
Abstract:
In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871624 Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control
Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy
Abstract:
Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.
Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32371623 Dynamic Admission Control for Quality of Service in IP Networks
Authors: J. Kasigwa, V. Baryamureeba, D. Williams
Abstract:
The goal of admission control is to support the Quality of Service demands of real-time applications via resource reservation in IP networks. In this paper we introduce a novel Dynamic Admission Control (DAC) mechanism for IP networks. The DAC dynamically allocates network resources using the previous network pattern for each path and uses the dynamic admission algorithm to improve bandwidth utilization using bandwidth brokers. We evaluate the performance of the proposed mechanism through trace-driven simulation experiments in view point of blocking probability, throughput and normalized utilization.Keywords: Bandwidth broker, dynamic admission control(DAC), IP networks, quality of service, real-time flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941622 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout
Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.Keywords: Metabolic network, gene knockout, flux balance analysis, microarray data, integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9961621 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series
Authors: M. H. Fattahi, H. Jahangiri
Abstract:
All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.Keywords: river flow time series, fractal, river networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16881620 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.
Keywords: LTE, Multimedia flows, Scheduling algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48111619 Improving Packet Latency of Video Sensor Networks
Authors: Arijit Ghosh, Tony Givargis
Abstract:
Video sensor networks operate on stringent requirements of latency. Packets have a deadline within which they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the loss of packets ultimately affects the quality of the application. Network latency is typically a function of many interacting components. In this paper, we propose ways of reducing the forwarding latency of a packet at intermediate nodes. The forwarding latency is caused by a combination of processing delay and queueing delay. The former is incurred in order to determine the next hop in dynamic routing. We show that unless link failures in a very specific and unlikely pattern, a vast majority of these lookups are redundant. To counter this we propose source routing as the routing strategy. However, source routing suffers from issues related to scalability and being impervious to network dynamics. We propose solutions to counter these and show that source routing is definitely a viable option in practical sized video networks. We also propose a fast and fair packet scheduling algorithm that reduces queueing delay at the nodes. We support our claims through extensive simulation on realistic topologies with practical traffic loads and failure patterns.Keywords: Sensor networks, Packet latency, Network design, Networkperformance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571618 A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks
Authors: Ankit Agrawal, Ankush Mittal
Abstract:
A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance.Keywords: Activators, correlation, dynamic time-lagged correlation based method, inhibitors, multi-time delay gene network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16141617 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks
Authors: M.K.Jeya Kumar
Abstract:
Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.
Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391616 Graphical Approach for Targeting Work Exchange Networks
Abstract:
Depressurization and pressurization streams in industrial systems constitute a work exchange network (WEN). In this paper, a novel graphical approach for targeting energy conservation potential of a WEN is proposed. Through constructing the composite work curves in the pressure-work diagram and assuming all of the mechanical energy of the depressurization streams is recovered by expanders, the maximum work target of a WEN can be determined via the proposed targeting steps. A WEN in an ammonia production process is used as a case study to illustrate the applicability of the proposed graphical approach.Keywords: Expanders, Graphical approach, Pressure-work diagram, Work exchange network, Work target
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011615 Harnessing the Power of AI: Transforming DevSecOps for Enhanced Cloud Security
Authors: Ashly Joseph, Jithu Paulose
Abstract:
The increased usage of cloud computing has revolutionized the IT landscape, but it has also raised new security concerns. DevSecOps emerged as a way for tackling these difficulties by integrating security into the software development process. However, the rising complexity and sophistication of cyber threats need more advanced solutions. This paper looks into the usage of artificial intelligence (AI) techniques in the DevSecOps framework to increase cloud security. This study uses quantitative and qualitative techniques to assess the usefulness of AI approaches such as machine learning, natural language processing, and deep learning in reducing security issues. This paper thoroughly examines the symbiotic relationship between AI and DevSecOps, concentrating on how AI may be seamlessly integrated into the continuous integration and continuous delivery (CI/CD) pipeline, automated security testing, and real-time monitoring methods. The findings emphasize AI's huge potential to improve threat detection, risk assessment, and incident response skills. Furthermore, the paper examines the implications and challenges of using AI in DevSecOps workflows, considering factors like as scalability, interpretability, and adaptability. This paper adds to a better understanding of AI's revolutionary role in cloud security and provides valuable insights for practitioners and scholars in the field.
Keywords: Cloud Security, DevSecOps, Artificial Intelligence, AI, Machine Learning, Natural Language Processing, NLP, cybersecurity, AI-driven Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321614 Performance of Total Vector Error of an Estimated Phasor within Local Area Networks
Authors: Ahmed Abdolkhalig, Rastko Zivanovic
Abstract:
This paper evaluates the Total Vector Error of an estimated Phasor as define in IEEE C37.118 standard within different medium access in Local Area Networks (LAN). Three different LAN models (CSMA/CD, CSMA/AMP and Switched Ethernet) are evaluated. The Total Vector Error of the estimated Phasor has been evaluated for the effect of Nodes Number under the standardized network Band-width values defined in IEC 61850-9-2 communication standard (i.e. 0.1, 1 and 10 Gbps).
Keywords: Phasor, Local Area Network, Total Vector Error, IEEE C37.118, IEC 61850.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41471613 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.
In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.
Keywords: ZigBee, Li-ion battery, solar panel, CC2530.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30911612 Cost Optimized CO2 Pipeline Transportation Grid: A Case Study from Italian Industries
Authors: P Bumb, U Desideri, F Quattrocchi, L Arcioni
Abstract:
This paper presents the feasibility study of CO2 sequestration from the sources to the sinks in the prospective of Italian Industries. CO2 produced at these sources captured, compressed to supercritical pressures, transported via pipelines and stored in underground geologic formations such as depleted oil and natural gas reservoirs, un-minable coal seams and deep saline aquifers. In this work, we present the optimized pipeline infrastructure for the CO2 with appropriate constraints to find lower cost system by the use of nonlinear optimization software LINGO 11.0. This study was conducted on CO2 transportation complex network of Italian Industries, to find minimum cost network for transporting the CO2 from sources to the sinks.
Keywords: CCS, CO2, ECBM, EU, NAP, LINGO, UNMIG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16401611 Design and Control Strategy of Diffused Air Aeration System
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35151610 Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network
Authors: Aswir Premadi, Mohammad Syuhaimi Ab. Rahman, Mohamad Najib Moh. Saupe, KasmiranJumari
Abstract:
An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.Keywords: ACS, monitoring tool, FTTH-PON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699