

Abstract—The Elliptic Curve Digital Signature algorithm-based

X509v3 certificates are becoming more popular due to their short
public and private key sizes. Moreover, these certificates can be
stored in Internet of Things (IoT) devices, with limited resources,
using less memory and transmitted in network security protocols,
such as Internet Key Exchange (IKE), Transport Layer Security
(TLS) and Secure Shell (SSH) with less bandwidth. The proposed
method gives another advantage, in that it increases the performance
of the above-mentioned protocols in terms of key exchange by saving
one scalar multiplication operation.

Keywords—Cryptography, elliptic curve digital signature

algorithm, key exchange, network security protocols.

I. INTRODUCTION

N this article, an alternative method of key exchange
algorithm is proposed based on using Elliptic Curve Digital

Signature (ECDSA) X.509 certificate algorithm parameters.
The proposed key exchange algorithm idea is based on using
ephemeral and static ECDSA public keys. All current well-
known protocols (IKE, TLS, SSH) use the Elliptic Curve
Diffie-Hellman (ECDH) algorithm for key exchange, which is
based on four scalar multiplication operations. Two scalar
multiplication operations are done on both the initiator and
responder sides. This method allows to speed up the key
exchange handshake by saving one scalar multiplication
operation. The proposed method can be used in applications
where secure connection establishment is critical. This article
is not intended to design a new protocol, but the proposed
method can be incorporated with any currently known
protocols, such as IKE, TLS, SSH and those based on ECDSA
X.509 certificate.

Another advantage of the proposed method is that it can be
used in the load balancer with an ECDSA X.509 certificate on
the server side. This method eliminates the creation of
separate tunnels from the load balancer to server or cluster, as
it is done today.

II. ECDH KEY EXCHANGE BASED NETWORK SECURITY

PROTOCOLS

The DSA (Digital Signature Algorithm) and ECDSA
(Elliptic Curve Digital Signature Algorithm) algorithms are
well known and NIST (National Institute of Standard)

A. Andreasyan and C. Connors are with VMware Inc. 3429 Hillview Ave
Palo Alto, CA 94304 USA (e-mail: aandreasyan@vmware.com,
cconnors@vmware.com).

approved algorithms. These algorithms are widely used in all
network security protocols, such as IKEv1/v2, SSL/TLS and
SSH.

All publicly known security key exchange protocols are
based either on DH, ECDH or RSA algorithm. For example,
IKEv1/v2 based on DH and ECDH algorithm; SSL/TLS on
RSA, DH, ECDH; SSH on DH, ECDH. Usually, DSA and
ECDSA algorithms are used for authentication purposes only.
All above mentioned network security protocols use ECDSA
based X.509 [1] certificate to authenticate peer only. As an
example, let us consider a TLS client server secure connection
from the point of view of DH or ECDH key exchange only
[2], [3]. In TLS protocol, the server authentication is
mandatory and client authentication is optional. Let us assume
that the client and server both have X.509 ECDSA type of
certificates and client authentication is mandatory also. In
order for the client and server to create a secure connection,
the client authenticates the server first by verifying server’s
X.509 certificate authenticity. The shared secret key is
generated using either DH or ECDH algorithms. Then, the
server authenticates the client and generates the same DH or
ECDH shared secret key. Both sides use a shared secret to
generate data record’s confidentiality and authentication keys.

The above described key exchange algorithm applies to IKE
[4] and SSH [5] protocols as well.

The ECDH algorithm uses scalar multiplication operation
for generating an ECDH ephemeral public key and a shared
secret. This operation is very resource and time-consuming,
specifically in devises with low computational resources.

In ECDH key exchange algorithms, two scalar
multiplication operations are required on each side [2]. In the
ECDHE_ECDSA cipher spec case, the server generates and
sends ephemeral ECDH public key (point) to the client along
with its certificate and ECDH domain parameters. The client
uses domain parameters and generates its ephemeral public
key (point) and shared secret key by doing two scalar
multiplication operations. Then it sends its public point to the
server along with its certificate. The server does the same
operation and generates a shared secret. Overall, four scalar
multiplication operations are required to generate the shared
secret, two on the server side and two on client side. This
cipher spec is commonly used in TLS protocol [2].

The above described ECDHE_ECDSA cipher spec is
represented in the steps below. This method uses different
domain parameters for the base point from the server and
client certificates. The prime order is different from ECDSA

A. Andreasyan, C. Connors

Alternative Key Exchange Algorithm Based on
Elliptic Curve Digital Signature Algorithm Certificate

and Usage in Applications

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:4, 2021

281International Scholarly and Scientific Research & Innovation 15(4) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
4,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
99

4.
pd

f

parameters; will be marked as G` and p`. First step: Alice
generates random integer x(A)from [2, p-1] and computes
Alice EC DH public key – YA = XA *G’. XA is EC DH private
key. Alice signs and sends YA to Bob along with her CERT(A)

REQUEST [{CERT(A), Y(A)}] Sig

Second step: By receiving REQUEST Bob verifies

REQUEST signature and computes Bob DH public key YB =
XB *G` where XB is Bob ECDH private key randomly
generated from [2, p-1]. Then Bob computes the shared secret
point by multiplying Alice ECDH public key YA with ECDH
private key XB Z = YA * XB Since YA = XA *G` then Z= XA *
XB *G` Bob signs REPLY and sends CERT(B) with EC DH
public key Y(B) to Alice.

REPLY [CERT(B), YB] Sig

Third step: By receiving REPLY Alice computes the shared
secret point by multiplying Bob’s EC DH public key with her
own EC DH private key x(A).Z= YB * XA . Since YB = XB *G`
then shared secret point is Z= XA * XB *G’

After these steps, both sides generate a Z shared secret,
which requires four scalar multiplication operations.

With low computational resources, devices are very critical
to speed up the key exchange process. There are already
proposed methods to solve this problem. For example:
 Precompute DH or ECDH public keys and keep them in

public key pool. Later, these keys are used during secure
connection establishment time. This method reduces
connection establishment time but still takes
computational resources, since the public key pool should
be updated periodically.

 Another approach is to use a statically generated DH
public key from X.509 certificate. This approach is part of
TLS protocol [1]. In the ECDH_ECDSA key exchange,
the ECDSA certificate contains an ECDH public key and
the server does not generate a public key separately. The
server only sends its certificate to the client. The client
authenticates the server. Then it generates an ECDH
public key using the server X.509 certificate EC domain
parameters and the server’s ECDH public key from the
X.509 ECDSA certificate. Then it generates the shared
secret key. As we see, the client does two scalar
multiplication operations. The client sends its public key
and X509 certificate to the server. The server
authenticates the client by verifying the certificate and
using the client’s ECDH public key to generate a shared
secret. Overall, three scalar multiplication operations are
required to obtain a shared secret: two scalar
multiplications on the client side and one on the server
side. The disadvantage of this cipher spec is that it does
not provide perfect forward secrecy, since the server
ECDH public is fixed in the certificate, and for this
reason, it is not commonly used in practice.

The proposed method tries to solve this problem in a
different way. In an elliptic curve domain, the scalar
multiplication is the most time and resource consuming
operation and saving one scalar multiplication will speed up
the whole key exchange process by 25%.

III. KEY EXCHANGE BASED ON X.509 ECDSA CERTIFICATE

PARAMETERS

To reduce the number of scalar multiplications, the
proposed algorithm combines the ECDH and ECDSA domain
parameters. For the sake of simplicity, let us consider that the
client and server have elliptic curve domain parameters
ECDH_ECDSA, which are part of the X509 certificate.

The proposed key exchange method can work with any type
of curves and provides perfect forward secrecy. This method
incorporates ECDSA X.509 certificate parameters with the
ECDH key exchange.

Let us assume that Alice (client) and Bob (server) have P-
curve ECDSA type of certificates. These types of certificates
have the following parameters T(p, r, b, G), where p- prime
module, r- order, b EC coefficient, and G base point, which
are common for Alice and Bob [1].

Each certificate has a Q public key and corresponding d
private key. The public and private key generation method is
out of the scope of this article. These keys will be used only
for signature generation and verification and not for key
exchange.

The proposed key exchange method uses only a G base
(generator) point, prime order, and the peer’s (server) ECDSA
public key. It is a two pass - REQUEST/REPLY protocol,
after which, both peers have the same shared secret. Alice has
X509 CERT(A) ={p, r, b, G, QA }, where dA is an ECDSA
private key and QA = dA*G is ECDSA public key Bob X509
CERT(B) ={p, r, b, G, QB dB is an ECDSA private key QB =
dB*G is ECDSA public key .

In the first step, Alice generates random integer XA from [2,
r-1] and computes a one-time public key - YA = XA *G. XA is
unique for each session. Alice signs the request and sends it to
Bob along with her CERT(A).

 REQUEST[{CERT(A), YA}] Sig

In the second step, Bob verifies the REQUEST signature
and computes the shared secret point by multiplying the one-
time public key YA with the ECDSA private key XB Z = YA *
dB. Since, YA = XA *G then Z= XA *G* dB. Bob sends REPLY
with CERT(B) to Alice.

REPLY [CERT(B)]

In the third step: by receiving REPLY, Alice computes the

shared secret point by extracting Bob’s ECDSA public key
from certificate CERT(B) and multiplying previously,
randomly generated XA. Z = QB* XA and since, YB = XB*G.
then the shared secret point is Z = dB*G* XA.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:4, 2021

282International Scholarly and Scientific Research & Innovation 15(4) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
4,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
99

4.
pd

f

After these steps, both sides have the same shared secret
key Z, which can be used for generating data records
confidentiality and authentication keys. The proposed method
requires three scalar multiplication operations, where the
regular ECDH case four scalar multiplication operations are
required. Since each new connection uses new generated
ephemeral ECDH keys, it therefore provides perfect forward
secrecy.

Comparing the proposed method with the ECDHE_ECDSA
cipher spec, it saves one scalar multiplication and provides
shorter payload length as well.

In applications, where a client connects to known servers,
then the servers X.509 certificates must be known before
starting a new connection. This situation allows skipping the
REPLY step from the client and the key exchange can be done
in one step. The REPLY step scalar multiplication operation
can be combined in the REQUEST step operation and the
shared point can be calculated right after generating a random
integer and calculating YA = XA *G, and Z = dB*G* XA. The
proposed approach is very similar to the RSA type of key
exchange based on the RSA type of X.509 certificate used in
TLS protocol.

In the above description, we considered that both sides have
common ECDSA parameters, which assumes that Alice’s and
Bob’s certificates are issued by the same CA. The proposed
method can be used with different ECDSA parameters as well.
In this case, the server certificate must be available before the
client initiates a connection with server.

The proposed method allows speeding up the key exchange
process by saving one scalar multiplication operation. The
proposed method is not an ECDH_ECDSA cipher spec
replacement. This method can be used in some applications
where the secure connection establishment process is critical.

IV. LOAD BALANCER WITH X.509 ECDSA CERTIFICATE.

In current technology, SSL traffic often needs to be
decrypted on a load balancer before passing a request. This is
called SSL-termination. This approach saves a server or
cluster of servers from spending time on decrypting traffic. It
also allows consolidating network-based services, such as web
application firewalls, intrusion detection and compression as
well as caching in one single point. However, it results in
security concerns since traffic between the load balancer and
server is not encrypted.

Another approach is to pass SSL traffic (called pass-
through) to a server, which then does the decryption. This
however requires more CPU powers on the server side. This
covers the security concern but requires creating a secure
tunnel between server and load balancer.

To cover the security concern and avoid creating extra
tunnels between the load balancer and server, the server’s
X.509 certificate and private key can be loaded into the load
balancer. The load balancer can decrypt the traffic and apply
all security services and then pass the client’s encrypted traffic
to the server. This mechanism works only when a server has
the RSA type of certificate. When a server has either ECDSA
or DSA types of certificates, the load balancer needs to create

additional tunnels between the server and clusters. Creating
additional secure tunnels is a resource heavy and time-
consuming operation. It requires managing and reestablishing
these tunnels due to timeout also.

The proposed method can be well applied in this scenario
and avoid creating additional tunnels between the load
balancer and server or clusters. If a client operates in an
aforementioned way, the servers ECDSA or DSA certificate
can be loaded into the load balancer, which allows it to
generate the same shared secret key along with the server or
clusters. Later on, the shared secret key can be used to decrypt
the client’s traffic on the load balancer without creating
additional tunnels with the server or cluster. The server or
cluster will use the same shared secret to decrypt the client’s
traffic as well.

In this application, the load balancer allows to save CPU
time on the server or clusters sides and have a centralized
point to apply deep packet inspection policy. This approach is
similar with the RSA type of certificate approach and allows
the load balancer to operate in the same way for the server
certificate.

V. MATHEMATICAL PROOF OF THE PROPOSED ALGORITHM

Let us assume that Alice (client) and Bob (server) have P-
curve ECDSA type of certificates. This type of certificate has
the following parameters T(p, r, a, b, G), where p- prime
module, r- order, a and b- EC coefficient (field elements) [6],
G- base point, which are common for Alice and Bob.

The keys for the ECDSA are computed as follows:
 Use an elliptic curve E with
 module p
 coefficients a and b (where can be a=0)
 a point G which generates a cyclic group of prime order r
 Choose a random integer d with 0 < d < r
 Compute Y = d*G

The keys are:
 Public Key = (p, r, a, b, Y, G). The ECDSA certificate

contains all these parameters,
 Private Key = d

Alice and Bob both have certificates issued from the same
root of trust. Alice’s certificate -Cert(A) contains parameters
(p, r, a, b, YA, G) and Bob’s certificate Cert(B)-(p, r, a, b, YB,

G).
When Alice ties to exchange a key with Bob, the following

steps must be done:
Step1.
 generate random integer - one-time private key XA from

[1, r-1]
 compute one-time public key (point multiplication) YA =

XA *G
 send one-time public key - YA along with her x.509v3

certificate -Cert(A) to Bob
Step2. By receiving YA and Cert(A) Bob does the following

operations:
 computes (point multiplication) shared secret key Z = YA

* dB

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:4, 2021

283International Scholarly and Scientific Research & Innovation 15(4) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
4,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
99

4.
pd

f

 sends his x.509v3 certificate - Cert(B) to Alice
Step3. By receiving Bob’s certificate, Alice does the following

operation:
 computes a shared secret key Z, using Bob’s YB public

key from certificate and her one-time private key XA - Z=
YB * XA

Let us prove that the Z-shared secret key is the same on
both sides.

From the above described ESDSA key generation, Alice
and Bob have the following public keys (p, r, a, b, YA, G) and
(p, r ,a, b, YB, G), respectively, where YA = dA * G and YB =
dB* G where 1 < dA < r-1, 1 < dB < r-1 and G is base point of
prime order of r. The p is prime field-GF(p), where all point
arithmetic is implemented in terms of modulo p. The elements
of this filed are integers of modulo p. The field can be binary
GF(2m) as well. In this case point arithmetic will be done on
binary bit string. The point arithmetic type does not affect
algorithm validity.

To prove the proposed algorithm validity, let us use the
following theorem. We will not prove the theorem but will use
cyclic group property of the theorem.
Theorem: The points on an elliptic curve (E) together with in
an identity (or natural) element have cyclic subgroups
E(GF(p)). Under certain conditions all points in an elliptic
curve can form a cyclic group [7].

Based on cyclic group properties, a primitive element must
exist, such that its power generates entire group. Let’s denote
G primitive element (or base point as mentioned above) of
order r, where r is prime number.

Alice generates 1 < XA< r-1, since G is a primitive element
with order r then YA = XA *G (point multiplication) will result
in another point from the same cyclic group.

Bob computes Z = YA * dB, and based on the same cyclic
group property, it will result in point Z from the same cyclic
group, so Z and YA belongs to the same cyclic group. Since YA
= XA *G, let’s replace YA to get Z=XA *G * dB. Now let us
prove that Bob’s computed shared secret-Z is the same as what
Alice computes by receiving Bob’ certificate. Alice computes
YB * XA, since YB=dB* G by replacing YB, to get Z=dB* G*
XA. Based on cyclic subgroup multiplicative property Z=XA
*G * dB =dB* G* XA. As we see both sides obtain the same
shared secret key-Z.

VI. CONCLUSION

The proposed method allows ECDSA x509v3 certificates to
be used not only for authentication purposes, but it opens new
domain of usage such as in load balancers, where only one
session can be created between load balancer and web server.
It also saves one scalar multiplication operation in key
exchange, which saves resources and bandwidth specifically
for IoT devices.

REFERENCES
[1] Federal Information Processing Standards (FIPS) 186-4, Digital

Signature Standard, 2013
[2] T. Dierks E. Rescorla The Transport Layer Security (TLS) Protocol

Version 1.2, 2008

[3] E. Rescorla The Transport Layer Security (TLS) Protocol Version 1.3,
2018

[4] C. Kaufman, P.Hoffman, Y.Nir, P. Eronen T. Kivinen Internet Key
Exchange Protocol Version 2 (IKE), 2014

[5] T. Friedl, N. Provos, W. Simpson Deffie-Hellman Group Exchange for
Secure Shell Transport Layer Protocol, 2006

[6] L. Bassam, D Johnson, W. Polk Internet X509 Public Key Infrastructure
1999pp 5

[7] Cristof Paar, Jan Pelzl Understanding Cryptography, 2010, pp 246

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:15, No:4, 2021

284International Scholarly and Scientific Research & Innovation 15(4) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
4,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
99

4.
pd

f

