
 

 

 
Abstract—The Elliptic Curve Digital Signature algorithm-based 

X509v3 certificates are becoming more popular due to their short 
public and private key sizes. Moreover, these certificates can be 
stored in Internet of Things (IoT) devices, with limited resources, 
using less memory and transmitted in network security protocols, 
such as Internet Key Exchange (IKE), Transport Layer Security 
(TLS) and Secure Shell (SSH) with less bandwidth. The proposed 
method gives another advantage, in that it increases the performance 
of the above-mentioned protocols in terms of key exchange by saving 
one scalar multiplication operation. 
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I. INTRODUCTION 

N this article, an alternative method of key exchange 
algorithm is proposed based on using Elliptic Curve Digital 

Signature (ECDSA) X.509 certificate algorithm parameters. 
The proposed key exchange algorithm idea is based on using 
ephemeral and static ECDSA public keys. All current well-
known protocols (IKE, TLS, SSH) use the Elliptic Curve 
Diffie-Hellman (ECDH) algorithm for key exchange, which is 
based on four scalar multiplication operations. Two scalar 
multiplication operations are done on both the initiator and 
responder sides. This method allows to speed up the key 
exchange handshake by saving one scalar multiplication 
operation. The proposed method can be used in applications 
where secure connection establishment is critical. This article 
is not intended to design a new protocol, but the proposed 
method can be incorporated with any currently known 
protocols, such as IKE, TLS, SSH and those based on ECDSA 
X.509 certificate.  

Another advantage of the proposed method is that it can be 
used in the load balancer with an ECDSA X.509 certificate on 
the server side. This method eliminates the creation of 
separate tunnels from the load balancer to server or cluster, as 
it is done today. 

II. ECDH KEY EXCHANGE BASED NETWORK SECURITY 

PROTOCOLS 

The DSA (Digital Signature Algorithm) and ECDSA 
(Elliptic Curve Digital Signature Algorithm) algorithms are 
well known and NIST (National Institute of Standard) 
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approved algorithms. These algorithms are widely used in all 
network security protocols, such as IKEv1/v2, SSL/TLS and 
SSH. 

All publicly known security key exchange protocols are 
based either on DH, ECDH or RSA algorithm. For example, 
IKEv1/v2 based on DH and ECDH algorithm; SSL/TLS on 
RSA, DH, ECDH; SSH on DH, ECDH. Usually, DSA and 
ECDSA algorithms are used for authentication purposes only. 
All above mentioned network security protocols use ECDSA 
based X.509 [1] certificate to authenticate peer only. As an 
example, let us consider a TLS client server secure connection 
from the point of view of DH or ECDH key exchange only 
[2], [3]. In TLS protocol, the server authentication is 
mandatory and client authentication is optional. Let us assume 
that the client and server both have X.509 ECDSA type of 
certificates and client authentication is mandatory also. In 
order for the client and server to create a secure connection, 
the client authenticates the server first by verifying server’s 
X.509 certificate authenticity. The shared secret key is 
generated using either DH or ECDH algorithms. Then, the 
server authenticates the client and generates the same DH or 
ECDH shared secret key. Both sides use a shared secret to 
generate data record’s confidentiality and authentication keys.  

The above described key exchange algorithm applies to IKE 
[4] and SSH [5] protocols as well.  

The ECDH algorithm uses scalar multiplication operation 
for generating an ECDH ephemeral public key and a shared 
secret. This operation is very resource and time-consuming, 
specifically in devises with low computational resources. 

In ECDH key exchange algorithms, two scalar 
multiplication operations are required on each side [2]. In the 
ECDHE_ECDSA cipher spec case, the server generates and 
sends ephemeral ECDH public key (point) to the client along 
with its certificate and ECDH domain parameters. The client 
uses domain parameters and generates its ephemeral public 
key (point) and shared secret key by doing two scalar 
multiplication operations. Then it sends its public point to the 
server along with its certificate. The server does the same 
operation and generates a shared secret. Overall, four scalar 
multiplication operations are required to generate the shared 
secret, two on the server side and two on client side. This 
cipher spec is commonly used in TLS protocol [2]. 

The above described ECDHE_ECDSA cipher spec is 
represented in the steps below. This method uses different 
domain parameters for the base point from the server and 
client certificates. The prime order is different from ECDSA 
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parameters; will be marked as G` and p`. First step: Alice 
generates random integer x(A)from [2, p-1] and computes 
Alice EC DH public key – YA = XA *G’. XA is EC DH private 
key. Alice signs and sends YA to Bob along with her CERT(A) 

 
REQUEST [{CERT(A), Y(A)}] Sig 

--------------------------------  
 
Second step: By receiving REQUEST Bob verifies 

REQUEST signature and computes Bob DH public key YB = 
XB *G` where XB is Bob ECDH private key randomly 
generated from [2, p-1]. Then Bob computes the shared secret 
point by multiplying Alice ECDH public key YA with ECDH 
private key XB Z = YA * XB Since YA = XA *G` then Z= XA * 
XB *G` Bob signs REPLY and sends CERT(B) with EC DH 
public key Y(B) to Alice. 
 
REPLY [CERT(B), YB] Sig  
-------------------------------- 
 

Third step: By receiving REPLY Alice computes the shared 
secret point by multiplying Bob’s EC DH public key with her 
own EC DH private key x(A).Z= YB * XA . Since YB = XB *G` 
then shared secret point is Z= XA * XB *G’ 

After these steps, both sides generate a Z shared secret, 
which requires four scalar multiplication operations.  

With low computational resources, devices are very critical 
to speed up the key exchange process. There are already 
proposed methods to solve this problem. For example:  
 Precompute DH or ECDH public keys and keep them in 

public key pool. Later, these keys are used during secure 
connection establishment time. This method reduces 
connection establishment time but still takes 
computational resources, since the public key pool should 
be updated periodically. 

 Another approach is to use a statically generated DH 
public key from X.509 certificate. This approach is part of 
TLS protocol [1]. In the ECDH_ECDSA key exchange, 
the ECDSA certificate contains an ECDH public key and 
the server does not generate a public key separately. The 
server only sends its certificate to the client. The client 
authenticates the server. Then it generates an ECDH 
public key using the server X.509 certificate EC domain 
parameters and the server’s ECDH public key from the 
X.509 ECDSA certificate. Then it generates the shared 
secret key. As we see, the client does two scalar 
multiplication operations. The client sends its public key 
and X509 certificate to the server. The server 
authenticates the client by verifying the certificate and 
using the client’s ECDH public key to generate a shared 
secret. Overall, three scalar multiplication operations are 
required to obtain a shared secret: two scalar 
multiplications on the client side and one on the server 
side. The disadvantage of this cipher spec is that it does 
not provide perfect  forward secrecy, since the server 
ECDH public is fixed in the certificate, and for this 
reason, it is not commonly used in practice. 

The proposed method tries to solve this problem in a 
different way. In an elliptic curve domain, the scalar 
multiplication is the most time and resource consuming 
operation and saving one scalar multiplication will speed up 
the whole key exchange process by 25%. 

III. KEY EXCHANGE BASED ON X.509 ECDSA CERTIFICATE 

PARAMETERS 

To reduce the number of scalar multiplications, the 
proposed algorithm combines the ECDH and ECDSA domain 
parameters. For the sake of simplicity, let us consider that the 
client and server have elliptic curve domain parameters 
ECDH_ECDSA, which are part of the X509 certificate. 

The proposed key exchange method can work with any type 
of curves and provides perfect forward secrecy. This method 
incorporates ECDSA X.509 certificate parameters with the 
ECDH key exchange.  

Let us assume that Alice (client) and Bob (server) have P-
curve ECDSA type of certificates. These types of certificates 
have the following parameters T(p, r, b, G ), where p- prime 
module, r- order, b EC coefficient, and G base point, which 
are common for Alice and Bob [1]. 

Each certificate has a Q public key and corresponding d 
private key. The public and private key generation method is 
out of the scope of this article. These keys will be used only 
for signature generation and verification and not for key 
exchange.  

The proposed key exchange method uses only a G base 
(generator) point, prime order, and the peer’s (server) ECDSA 
public key. It is a two pass - REQUEST/REPLY protocol, 
after which, both peers have the same shared secret. Alice has 
X509 CERT(A) ={p, r, b, G, QA }, where dA is an ECDSA 
private key and QA = dA*G is ECDSA public key Bob  X509 
CERT(B) ={p, r, b, G, QB dB is an ECDSA private key QB = 
dB*G is ECDSA public key . 

In the first step, Alice generates random integer XA from [2, 
r-1] and computes a one-time public key - YA = XA *G. XA is 
unique for each session. Alice signs the request and sends it to 
Bob along with her CERT(A). 

 
 REQUEST[{CERT(A), YA}] Sig 
 --------------------------------   
 

In the second step, Bob verifies the REQUEST signature 
and computes the shared secret point by multiplying the one-
time public key YA with the ECDSA private key XB Z = YA * 
dB. Since, YA = XA *G then Z= XA *G* dB. Bob sends REPLY 
with CERT(B) to Alice. 

 
REPLY [CERT(B)]  
-------------------------------- 

 
In the third step: by receiving REPLY, Alice computes the 

shared secret point by extracting Bob’s ECDSA public key 
from certificate CERT(B) and multiplying previously, 
randomly generated XA. Z = QB* XA and since, YB = XB*G. 
then the shared secret point is Z = dB*G* XA. 
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After these steps, both sides have the same shared secret 
key Z, which can be used for generating data records 
confidentiality and authentication keys. The proposed method 
requires three scalar multiplication operations, where the 
regular ECDH case four scalar multiplication operations are 
required. Since each new connection uses new generated 
ephemeral ECDH keys, it therefore provides perfect forward 
secrecy. 

Comparing the proposed method with the ECDHE_ECDSA 
cipher spec, it saves one scalar multiplication and provides 
shorter payload length as well.  

In applications, where a client connects to known servers, 
then the servers X.509 certificates must be known before 
starting a new connection. This situation allows skipping the 
REPLY step from the client and the key exchange can be done 
in one step. The REPLY step scalar multiplication operation 
can be combined in the REQUEST step operation and the 
shared point can be calculated right after generating a random 
integer and calculating YA = XA *G, and Z = dB*G* XA. The 
proposed approach is very similar to the RSA type of key 
exchange based on the RSA type of X.509 certificate used in 
TLS protocol.  

In the above description, we considered that both sides have 
common ECDSA parameters, which assumes that Alice’s and 
Bob’s certificates are issued by the same CA. The proposed 
method can be used with different ECDSA parameters as well. 
In this case, the server certificate must be available before the 
client initiates a connection with  server.  

The proposed method allows speeding up the key exchange 
process by saving one scalar multiplication operation. The 
proposed method is not an ECDH_ECDSA cipher spec 
replacement. This method can be used in some applications 
where the secure connection establishment process is critical. 

IV. LOAD BALANCER WITH X.509 ECDSA CERTIFICATE. 

In current technology, SSL traffic often needs to be 
decrypted on a load balancer before passing a request. This is 
called SSL-termination. This approach saves a server or 
cluster of servers from spending time on decrypting traffic. It 
also allows consolidating network-based services, such as web 
application firewalls, intrusion detection and compression as 
well as caching in one single point. However, it results in 
security concerns since traffic between the load balancer and 
server is not encrypted.  

Another approach is to pass SSL traffic (called pass-
through) to a server, which then does the decryption. This 
however requires more CPU powers on the server side. This 
covers the security concern but requires creating a secure 
tunnel between server and load balancer. 

To cover the security concern and avoid creating extra 
tunnels between the load balancer and server, the server’s 
X.509 certificate and private key can be loaded into the load 
balancer. The load balancer can decrypt the traffic and apply 
all security services and then pass the client’s encrypted traffic 
to the server. This mechanism works only when a server has 
the RSA type of certificate. When a server has either ECDSA 
or DSA types of certificates, the load balancer needs to create 

additional tunnels between the server and clusters. Creating 
additional secure tunnels is a resource heavy and time-
consuming operation. It requires managing and reestablishing 
these tunnels due to timeout also. 

The proposed method can be well applied in this scenario 
and avoid creating additional tunnels between the load 
balancer and server or clusters. If a client operates in an 
aforementioned way, the servers ECDSA or DSA certificate 
can be loaded into the load balancer, which allows it to 
generate the same shared secret key along with the server or 
clusters. Later on, the shared secret key can be used to decrypt 
the client’s traffic on the load balancer without creating 
additional tunnels with the server or cluster. The server or 
cluster will use the same shared secret to decrypt the client’s 
traffic as well.  

In this application, the load balancer allows to save CPU 
time on the server or clusters sides and have a centralized 
point to apply deep packet inspection policy. This approach is 
similar with the RSA type of certificate approach and allows 
the load balancer to operate in the same way for the server 
certificate. 

V. MATHEMATICAL PROOF OF THE PROPOSED ALGORITHM 

Let us assume that Alice (client) and Bob (server) have P-
curve ECDSA type of certificates. This type of certificate has 
the following parameters T(p, r, a, b, G), where p- prime 
module, r- order, a and b- EC coefficient (field elements) [6], 
G- base point, which are common for Alice and Bob. 

The keys for the ECDSA are computed as follows: 
 Use an elliptic curve E with 
 module p 
 coefficients a and b (where can be a=0) 
 a point G which generates a cyclic group of prime order r 
 Choose a random integer d with 0 < d < r 
 Compute Y = d*G 

The keys are: 
 Public Key = (p, r, a, b, Y, G). The ECDSA certificate 

contains all these parameters, 
 Private Key = d 

Alice and Bob both have certificates issued from the same 
root of trust. Alice’s certificate -Cert(A) contains parameters 
(p, r, a, b, YA, G) and Bob’s certificate Cert(B)-(p, r, a, b, YB, 

G). 
When Alice ties to exchange a key with Bob, the following 

steps must be done: 
Step1.  
 generate random integer - one-time private key XA from 

[1, r-1] 
 compute one-time public key (point multiplication) YA = 

XA *G 
 send one-time public key - YA along with her x.509v3 

certificate -Cert(A) to Bob 
Step2. By receiving YA and Cert(A) Bob does the following 

operations: 
 computes (point multiplication) shared secret key Z = YA 

* dB 
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 sends his x.509v3 certificate - Cert(B) to Alice 
Step3. By receiving Bob’s certificate, Alice does the following 

operation: 
 computes a shared secret key Z, using Bob’s YB public 

key from certificate and her one-time private key XA - Z= 
YB * XA 

Let us prove that the Z-shared secret key is the same on 
both sides. 

From the above described ESDSA key generation, Alice 
and Bob have the following public keys (p, r, a, b, YA, G) and 
(p, r ,a, b, YB, G), respectively, where YA = dA * G and YB = 
dB* G where 1 < dA < r-1, 1 < dB < r-1 and G is base point of 
prime order of r. The p is prime field-GF(p), where all point 
arithmetic is implemented in terms of modulo p. The elements 
of this filed are integers of modulo p. The field can be binary 
GF(2m ) as well. In this case point arithmetic will be done on 
binary bit string. The point arithmetic type does not affect 
algorithm validity. 

To prove the proposed algorithm validity, let us use the 
following theorem. We will not prove the theorem but will use 
cyclic group property of the theorem.  
Theorem: The points on an elliptic curve (E) together with in 
an identity (or natural) element have cyclic subgroups 
E(GF(p)). Under certain conditions all points in an elliptic 
curve can form a cyclic group [7]. 

Based on cyclic group properties, a primitive element must 
exist, such that its power generates entire group. Let’s denote 
G primitive element (or base point as mentioned above) of 
order r, where r is prime number. 

Alice generates 1 < XA< r-1, since G is a primitive element 
with order r then YA = XA *G (point multiplication) will result 
in another point from the same cyclic group. 

Bob computes Z = YA * dB, and based on the same cyclic 
group property, it will result in point Z from the same cyclic 
group, so Z and YA belongs to the same cyclic group. Since YA 
= XA *G, let’s replace YA to get Z=XA *G * dB. Now let us 
prove that Bob’s computed shared secret-Z is the same as what 
Alice computes by receiving Bob’ certificate. Alice computes 
YB * XA, since YB=dB* G by replacing YB, to get Z=dB* G* 
XA. Based on cyclic subgroup multiplicative property Z=XA 
*G * dB =dB* G* XA. As we see both sides obtain the same 
shared secret key-Z. 

VI. CONCLUSION 

The proposed method allows ECDSA x509v3 certificates to 
be used not only for authentication purposes, but it opens new 
domain of usage such as in load balancers, where only one 
session can be created between load balancer and web server. 
It also saves one scalar multiplication operation in key 
exchange, which saves resources and bandwidth specifically 
for IoT devices. 
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