

Abstract—Border Gateway Protocol (BGP) is the main routing

protocol that enables routing establishment between all autonomous
systems, which are the basic administrative units of the internet. Due
to the poor protection of BGP, it is important to use additional BGP
security systems. Many solutions to this problem have been proposed
over the years, but none of them have been implemented on a global
scale. This article describes a system capable of building images of
real-time BGP network topology in order to detect BGP anomalies.
Our proposal performs a detailed analysis of BGP messages that come
into local network cards supplemented by information collected by
remote collectors in different localizations.

Keywords—Border Gateway Protocol, BGP, BGP hijacking,
cybersecurity, detection.

I. INTRODUCTION

NTERNET infrastructure consists of units called
Autonomous Systems (AS) that exchange routing

information with their peers using BGP. The current 4th version
of BGP was first described in RFC 4271 [1] in 2006, and since
then, the main structure of protocol has not changed.
Unfortunately, it is a protocol vulnerable by design, which
means that authors did not design any security algorithms. This
fact is the reason of many BGP attacks causing breaks in the
availability of the attacked services or interception of network
traffic including sensitive data. Another issue is that the entire
BGP configuration is written manually, which may be the
source of many human errors and misconfigurations that could
have the same effects as an intended attack.

Designing a universal BGP attack, the detection system is
still an open issue; nevertheless, there are many publicly
available web applications and tools that collect, analyze and
provide current BGP data via UI or API. One of them is RIPE
RIS (Routing Information Service belonging to the RIPE
Network Coordination Center) [2], which consists of elements
such as:
 RIS MRT files [3] – a dataset of all BGP messages

collected by more than 20 RIS Route Collectors (RCC) for
over 20 years in MRT format, which need one of the
parsers listed at [3] to be correctly read.

 RIS Live [4] – a service providing BGP messages from
RCC-s in real time via JavaScript and Python API-s or via
streaming interface,

 RISwhois [5] – an application retrieving data about current
prefix announcers,

A. Starczewska, A. Nawrat, K. Daniec, J. Homa, and K. Hołda are with the

Silesian University of Technology Faculty of Automatic Control, Electronics
and Computer Science, 41100 Gliwice, Akademicka 16, Poland (e-mail: Alicja.

 RIPEstat [6] – a service collecting current and historical
BGP information, such as geolocalization, AS paths,
AS neighbors, and RPKI status etc., available via UI or API
basing on HTTP requests.

There are also other institutions apart from RIPE NCC that
deal with BGP analysis. The University of Oregon developed a
project called RouteViews [7] that collects BGP data from more
than 30 collectors located around the world. Another is
BGPMon from Cisco [8], which is an application monitoring
users’ prefixes in hundreds of locations and alerting in the case
of odd path change. Besides, it performs RPKI validation. The
Center for Applied Internet Data Analysis (CAIDA) develops
an open-source framework called BGPStream [9], [10] that
supports C++ and Python implementations of BGP analysis
systems using RIPE RIS [2], RouteViews [7] and local
archives.

The subject of the article is:
 an overview of existing systems and applications detecting

BGP attacks,
 a description of the new application that analyzes BGP

traffic in order to issue an anomaly alert.

II. STATE OF THE ART

A. Literature Analysis

Sermpezis et al. [11] described a real-time system called
ARTEMIS that monitors the visibility of owned prefixes from
the point of view of other AS-es using RIPE RIS [2],
RouteViews [7], BGPMon [8] and BGPStream [10]. The
system detects hijacking by origin modification and hijacking
by path manipulation, both exact prefixes and subprefixes. The
detection process is performed based on the list of monitored
prefixes and AS-es owning them, and the list of monitored AS-
es and their neighbors. After an attack occurrence, ARTEMIS
runs one of its mitigation methods. According to [11], the
system is able to mitigate the hijacking in just one minute.

Shi et al. [12] proposed a BGP hijacking detection system
called Argus. It compares data retrieved from BGPMon [8] and
RouteViews [7] mentioned in Section I with IP-s collected from
Caida Ark [13], iPlane [14] and DNS records [15]. To confirm
a hijacking, the system uses a number of so-called “Eyes of
Argus”, which are public route-servers and looking-glasses.
Argus checks the suspicious prefix on the eyes’ BGP routing
tables and performs a ping test to validate the reachability of the
prefix from each eye.

Starczewska@polsl.pl, Aleksander.Nawrat@polsl.pl, Krzysztof.Daniec@
polsl.pl, Jaroslaw.Homa@polsl.pl, Kacper.Hołda@polsl.pl).

A. Starczewska, A. Nawrat, K. Daniec, J. Homa, K. Hołda

System Detecting Border Gateway Protocol
Anomalies Using Local and Remote Data

I

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:18, No:7, 2024

169International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

7,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
6.

pd
f

Lad et al. [16] described PHAS – Prefix Hijack Alert System.
It is a web service, where users define their prefixes on their
accounts. The system monitors prefixes declared by users using
data from RouteViews [7] and RIPE [4], and in the case of an
anomaly, it sends an email to the user. In order to limit the
number of alerts, it uses a time-window. To enable users to
automate receiving alerts, authors provide local application for
processing notification emails that can be customized.

Qiu et al. [17] proposed a system to detect bogus routes. Its
work is divided into the initialization phase with given time,
when it collects data to build the knowledge base, and the main
phase, when it simultaneously receives routes and checks if
they are bogus. The source of received routes depend on the
deploy scenario. If the system is deployed by a service provider,
it collects messages from its routers; however, it can also be
used as monitoring system for whole internet and then it
analyzes data from RouteViews [7] or RIPE RIS [2]. It stores
every pair of upstream and downstream AS-es from updates’
paths received during time window and every pair of prefix and
origin AS. In the main phase, it checks if a new path consists of
stored pairs and if the new pair prefix-AS is present in the stored
pairs. If not, the route is classified as bogus.

Zheng et al. [18] described a scheme for detecting BGP
hijacking basing on a number of monitors located around the
world. The system periodically measures the maximum value
of distances between each monitor and monitored prefix. If this
value is big, prefix may be hijacked and path disagreement
detection is performed. This process consists in comparing path
to prefix with path to reference point, that should be chosen as
close to the prefix as possible. The path to the reference point
should be a part of or very similar to path to the prefix. If it is
not, prefix is classified as hijacked.

B. Open Source Solutions

There are many open-source applications detecting BGP
anomalies. One of them is BGPalerter [19], an application
implemented in JavaScript language. It monitors chosen
prefixes and AS-es for event such as lost visibility or hijack
prefixes, invalid RPKI state or unexpected neighbors. The
system uses data from RIS Live [4], RIPEstat [6] and a tool
called rpki-validator [20] by the same author, that checks the
RPKI state in services rpki-client.org [21], Routinator [22] and
cfrpki from Cloudflare [23].

Another one is called BGPAA [24] and it works basing on
archival MRT files [3]. That archive is updated every 5 minutes,
which allows for analyzing both historical attacks and current
data. The application detects BGP hijackings and presents
results not only in log files, but also as graphs containing all
routes with highlighted attacks. It is implemented using a
framework called TaBi [25] created to facilitate BGP anomalies
detection and classification. It needs the MRT files parser, for
example MaBo [26] or BGPReader [27] that is a part of
CAIDA’s BGPStreamer mentioned in Section I.

Repository route_leaks [28] from ANSSI (fr. Agence
nationale de la sécurité des systèmes d'information) contains
different implementations detecting route leaks anomalies. The
first algorithm compares the number of announced prefixes

during one day and the number of conflicts between AS-es
during this day. It is written in Python language and in order to
speed up operation in Rust language. Another method
implements SVM classifier. The last one is based on the
proposal of Ju et al. [29] that filters BGP messages rejecting a
few cases, e.g., if AS has announced a prefix form more than
one day in the past year, it is IXP prefix or who is service says
that AS-es announcing prefix belong to the same organization.
For the rest of updates, if the number of AS-es announcing the
same prefix exceeds given threshold it is classified as route
leak. Data used by implementations are generated using TaBi
[25] and MaBo [26] mentioned earlier.

III. PROPOSED SYSTEM

The described solution is a multidimensional system
designed to efficiently process incoming BGP data,
meticulously analyze BGP updates and trigger real-time alerts
in case of irregularities or suspicious activities. Its scheme is
shown in Fig. 1. The main element of the system is the Node.js
application that leverages event-driven design and non-
blocking I/O operations. It consists of two modules. The first of
them, analysis module, processes each received BGP message
saved in JSON format in order to extract critical information.
The preprocessing phase involves extracting data such as the
message type, AS path, involved prefixes and timestamp. The
basis of the algorithm is custom-defined class called ASN
encapsulating crucial information about given AS, such as its
number, associated prefixes and routing policies. Thanks to the
array of objects of ASN type the system gains a comprehensive
understanding of the BGP network’s topology and routing
relationships, that enables to intelligently analyze BGP updates
within the broader context of AS interactions.

Fig. 1 System diagram

The other module is implemented basing on BGPalerter [19]
mentioned in Section II B. It is responsible for monitoring
global BGP infrastructure visible from different collectors
located all around the world. It performs that functionality using
publicly available services, such as RIS Live [4], RIPEstat [6],

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:18, No:7, 2024

170International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

7,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
6.

pd
f

NTT RPKI VRPs [22] containing information related to
historical AS entry records, Cloudflare VRPs [23] providing
insights into the number of ROAs over time, along with
statistics on trust anchors and maximum prefix lengths and
Rpki-client.org VRPs [21] querying the global RPKI repository
system, verifying untrusted network input. BGPalerter
implements 10 different monitor analyzing data receiving from
above services but it is focused on chosen AS. At the beginning
of work application asks user about AS-es, that should be
monitored. Then the application downloads information about
given AS from public services. This information mainly
contains a list of announced prefixes. Unfortunately, in original
BGPalerter that list is not always valid. Services used by
application are based on data from collectors. If a request is sent
during an attack or other anomaly, collectors may see an
improper prefix list and, as a result of that situation, the received
prefix list may be false. However, this issue will be fixed in the
future work.

Both modules, analysis module and BGPalerter, generate a
set of alerts regarding e.g., suspicious prefixes or invalid RPKI.
A full list of alerts is presented in Table I. Generated alerts are
parsed by an extremely fast msgpackr library [30] into a
compact binary format. Next, they are inserted into the Redis
[31] database.

TABLE I

ALERTS REPORTED BY SYSTEM

Alert Description

MANY NOTLISTED
PREFIXES

AS announces prefixes it should not announce.

ONE NOTLISTED PREFIX AS announces one prefix it should not announce.

CHANGED AS PREFIX Prefix is announced by other AS then previous.

NEW PREFIX AS announces a new prefix.

PREFIX LENGTH Wrong prefix length.

NEW NEIGHBOUR There is a new neighbor.

ROA DISAPPEAR ROA disappeared from TA.

ROA EXPIRING ROA is going to expire in given time.

ROA CHANGE ROA is changed.

NO LONGER ROA ROUTE Path is not in ROA, but it was.

NOT ROA ROUTE Path is not in ROA.

NOT RPKI VAL ROUTE Path is not RPKI valid.

PREFIX VISIBILITY Prefix is not visible by peer.

NEW PREFIX New prefix is announced.

PATH CHANGED Path to the AS is changed.

OLD PREFIX ANNOUNCED Withdrawn prefix is announced again.

OLD PREFIX DIFFERENT AS Withdrawn prefix is announced by another AS.

NO CONNECTION There is no connection with peer.

Another element of the system is the TCP server being the
entry point of the application, serving as the central hub that
accepts incoming BGP update messages from multiple
connected clients. This module efficiently manages client
connections, establishes communication channels, and routes
the incoming data to the appropriate processing components.
Leveraging Node.js's event-driven architecture, the server
module is adept at handling concurrent connections without
compromising performance, thereby ensuring seamless data
flow and timely processing.

The next part of the system is the program called bgpSniffer

that acts as the client for TCP server. The system allows to
collect BGP messages from multiple network cards belonging
to the system’s subnet. For each network card there is one
running instance of bgpSniffer. The program captures incoming
packets from the selected network card and filters them for BGP
messages. Then, it converts the payload into JSON format and
transmits returned data into the TCP server. It is implemented
in C++ language and uses the libpcap library.

IV. TEST STAND

The system was tested using real data. A scheme of the test
stand is presented in Fig. 2. It consists of four Ubuntu virtual
machines with running Bird [32], one of the BGP
implementations for Linux. These machines are connected via
virtual switches and are configured as peers with ASN from a
private range. One of them acts as the private peer of global
AS8508 of the Silesian University of Technology and receives
the whole BGP traffic. Then, it transmits the routing table to
other private peers. The described application is running at
AS65530 and captures data from three network cards connected
to AS65531, AS65532 and AS6533.

Fig. 2 Test stand

The application was tested in terms of the number of
generated alerts. The test scenario assumed executing the
program for 5 hours and saving the number of generated alerts
and their size in the Redis database every hour. Each module
was tested separately. First, there was a test of the analysis
module with three instances of bgpSniffer for three network
cards and any AS configured as input of the BGPalerter. After
the 5 hours, the application was executed the second time
without any instances of bgpSniffer and with AS8508
configured as the input of BGPalerter. The results are shown in
Table II. It was noticed that the analysis module generates many
more alerts than the BGPalerter. The reason for this situation is
that the analysis module monitors every single incoming prefix
and BGPalerter focuses on user prefixes. Most of the
information generated by the analysis module is used to build
the BGP network topology, which is highly dynamic and paths
to different origins change very often. This phenomenon is
visible in the large number of alerts. On the other side,
BGPalerter does not check paths to the origin, so that part of the
application generates far fewer alerts than the analysis module.
What is important is that despite the large number of alerts
saved in the database, their size is relatively small due to the

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:18, No:7, 2024

171International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

7,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
6.

pd
f

good data compression achieved with msgpackr. This is a
significant advantage of the system due to limited available
storage in these types of applications.

The other important fact is that the analysis module generates
only about four alerts per second. Considering that the system
receives dozens of BGP messages per second, that amount is
relatively small, which indicates that the system may be
computationally inefficient.

TABLE II

TEST RESULTS: NUMBER OF ALERTS AND THEIR SIZE

Time Analysis module BGPalerter

1 h 10892 / 5.18 MB 4 / 862.70 kB

2 h 25368 / 10.75 MB 13 / 865.90 kB

3 h 37281 / 17.62 MB 21 / 871.13 kB

4 h 51124 / 24.29 MB 34 / 886.55 kB

5 h 68237 / 32.38 MB 42 / 900.81 kB

V. CONCLUSION

This article describes a proposed system analyzing a BGP
network and detecting suspicious BGP data. The application
monitors visibility of owned prefixes using publicly available
services with data from collectors in different localizations,
checks agreement of incoming data with RPKI and builds
current BGP topology seen by itself. Unfortunately, tests
showed the need to increase capacity, which is the goal of future
development of the application. Despite that, the system is still
a useful tool for BGP analysis that is able to build current BGP
network topology and detect BGP anomalies.

ACKNOWLEDGMENT

This work has been supported by European Union -
European Regional Development Fund as a project ID:
POIR.01.01.01-00-0029/20 “Development of an innovative
platform based on blockchain technology”.

REFERENCES
[1] REKHTER, Yakov; LI, Tony; HARES, Susan (ed.). RFC 4271: A border

gateway protocol 4 (BGP-4). 2006.
[2] „RIPE NCC Routing Information Service” (Online). Available on:

https://www.ripe.net/analyse/internet-measurements/routing-
information-service-ris

[3] „RIS Docs: Route Collection Raw Data: MRT Files” (Online). Available
on: https://ris.ripe.net/docs/20_raw_data_mrt.html

[4] „Routing Information Service Live” (Online). Available on: https://ris-
live.ripe.net/

[5] „RIS Docs: RISwhois” (Online). Available on:
https://ris.ripe.net/docs/27_riswhois.html#dataservice

[6] „RIPEstat: Providing open data and insights for Internet resources”
(Online). Available on: https://stat.ripe.net/about/

[7] „University of Oregon RouteViews Project” (Online). Available on:
https://www.routeviews.org/routeviews/

[8] „BGPMon is Now Part of CrossworkCloud” (Online). Available on:
https://www.bgpmon.net/

[9] ORSINI, Chiara, et al. BGPStream: a software framework for live and
historical BGP data analysis. In: Proceedings of the 2016 Internet
Measurement Conference. 2016. p. 429-444.

[10] „BGPStream” (Online). Available on: https://bgpstream.caida.org/
[11] SERMPEZIS, Pavlos, et al. ARTEMIS: Neutralizing BGP hijacking

within a minute. IEEE/ACM Transactions on Networking, 2018, 26.6:
2471-2486.

[12] SHI, Xingang, et al. Detecting prefix hijackings in the internet with argus.
In: Proceedings of the 2012 Internet Measurement Conference. 2012. p.

15-28.
[13] „Archipelago (Ark) Measurement Infrastructure” (Online). Available on:

https://www.caida.org/projects/ark/
[14] MADHYASTHA, Harsha V., et al. iPlane: An information plane for

distributed services. In: Proceedings of the 7th symposium on Operating
systems design and implementation. 2006. p. 367-380.

[15] „Hurricane Electric Internet Services” (Online). Available on:
https://bgp.he.net/net/166.111.0.0/16#_dns

[16] LAD, Mohit, et al. PHAS: A Prefix Hijack Alert System. In: USENIX
Security symposium. 2006. p. 3.

[17] QIU, Jian, et al. Detecting bogus BGP route information: Going beyond
prefix hijacking. In: 2007 Third International Conference on Security and
Privacy in Communications Networks and the Workshops-SecureComm
2007. IEEE, 2007. p. 381-390.

[18] ZHENG, Changxi, et al. A light-weight distributed scheme for detecting
IP prefix hijacks in real-time. ACM SIGCOMM Computer
Communication Review, 2007, 37.4: 277-288.

[19] „BGPalerter” (Online). Available on:
https://github.com/nttgin/BGPalerter

[20] „rpki-validator” (Online). Available on:
https://github.com/massimocandela/rpki-validator

[21] „rpki-client” (Online). Available on: https://www.rpki-client.org/
[22] „RPKI TOOLS: Routinator” (Online). Available on:

https://www.nlnetlabs.nl/projects/rpki/routinator/
[23] „Cloudflare RPKI Validator Tools and Libraries” (Online). Available on:

https://github.com/cloudflare/cfrpki
[24] „BGPAA” (Online). Available on:

https://github.com/BGPAA/BGP_Attack_Analysis
[25] „TaBi – Track BGP Hijacks” (Online). Available on:

https://github.com/ANSSI-FR/tabi
[26] „MaBo – MRT and BGP in OCaml” (Online). Available on:

https://github.com/ANSSI-FR/mabo
[27] „BGPStream: BGPReader” (Online). Available on:

https://bgpstream.caida.org/docs/tools/bgpreader
[28] „Route Leak Detection” (Online). Available on:

https://github.com/ANSSI-FR/route_leaks
[29] JU, Qing; KHARE, Varun; ZHANG, Beichuan. Large route leak

detection. NANOG'49, 2010.
[30] „Namby Pamby Magicians: msgpackr” (Online). Available on:

https://www.npmjs.com/package/msgpackr
[31] „Redis” (Online). Available on: https://redis.io/
[32] „The BIRD Internet Routing Deamon” (Online). Available on:

https://bird.network.cz/

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:18, No:7, 2024

172International Scholarly and Scientific Research & Innovation 18(7) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

7,
 2

02
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

72
6.

pd
f

