Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control
Authors: Dipali Bansal, Rashima Mahajan, Shweta Singh, Dheeraj Rathee, Sujit Roy
Abstract:
Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.
Keywords: Brain Computer Interface, EDF Browser, EEG, EEGLab, EMOTIV, Real time Acquisition
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092191
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3241References:
[1] Jinghai, Y.; Derong, J.; Jianfeng, H. Design and Application of Brain-Computer Interface WebBrowserBased on VEP. In Proceedings of the International Conference on Future BioMedical Information Engineering (FBIE’09), Sanya, China, 13–14 December 2009; pp. 77–80.
[2] Zhu, D.; Bieger, J.; Garcia Molina, G.; Aarts, R.M. A survey of stimulation methods used in SSVEP-Based BCIs. Comput. Intell. Neurosci. 2010, doi: 10.1155/2010/702357.
[3] Guangyu, B.; Xiaorong, G.; Yijun, W.; Bo, H.; Shangkai, G. VEP-based brain-computer interfaces: Time, frequency, and code modulations
[Research Frontier]. IEEE Comput. Intell.Mag. 2009, 4, 22–26.
[4] Lee, P.; Hsieh, J.; Wu, C.; Shyu, K.; Wu, Y. Brain computer interface using flash onset and offset visual evoked potentials. Clin. Neurophysiol. 2008, 119, 605–616.
[5] Allison, B.Z.; McFarland, D.J.; Schalk, G.; Zheng, S.D.; Jackson, M.M.; Wolpaw, J.R. Towards an independent brain-computer interface using steady state visual evoked potentials. Clin.Neurophysiol. 2008, 119, 399–408.
[6] Dan, Z.; Alexander, M.; Xiaorong, G.; Bo, H.; Andreas, K.E.; Shangkai, G. An independent brain-computer interface using covert non-spatial visual selective attention. J. Neural Eng. 2010, 7, 016010.
[7] Wu, Z.; Lai, Y.; Xia, Y.; Wu, D.; Yao, D. Stimulator selection in SSVEP-based BCI. Med. Eng. Phys. 2008, 30, 1079–1088.
[8] Hinterberger, T.; Schmidt, S.; Neumann, N.; Mellinger, J.; Blankertz, B.; Curio, G.; Birbaumer, N. Brain-computer communication and slow cortical potentials. IEEE Trans. Biomed. Eng. 2004, 51, 1011–1018.
[9] Kaiser, J. Self-initiation of EEG-based communication in paralyzed patients. Clin. Neurophysiol. 2001, 112, 551–554.
[10] Neumann, N.; Birbaumer, N. Predictors of successful self control during brain-computer communication. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1117–1121.
[11] Birbaumer, N.; Hinterberger, T.; Kubler, A.; Neumann, N. The thought-translation device (TTD): Neurobehavioral mechanisms and clinical outcome. IEEE Trans. Neural Syst. Rehabil. Eng.2003, 11, 120–123.
[12] Iversen, I.H.; Ghanayim, N.; Kübler, A.; Neumann, N.; Birbaumer, N.; Kaiser, J. A brain-computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin. Neurophysiol. 2008, 119, 2214–2223.
[13] Ikegami, S.; Takano, K.; Saeki, N.; Kansaku, K. Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury. Clin. Neurophysiol. 2011, 122, 991–996
[14] Mugler, E.M.; Ruf, C.A.; Halder, S.; Bensch, M.; Kubler, A. Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans. NeuralSyst. Rehabil. Eng. 2010, 18, 599–609.
[15] Furdea, A.; Halder, S.; Krusienski, D.J.; Bross, D.; Nijboer, F.; Birbaumer, N.; Kübler, A. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 2009, 46, 617–625.
[16] Wolpaw, J.R.; McFarland, D.J.; Vaughan, T.M. Brain-computer interface research at the Wadsworth Center. IEEE Trans. Rehabil. Eng. 2000, 8, 222–226.
[17] Blankertz, B.; Losch, F.; Krauledat, M.; Dornhege, G.; Curio, G.; Muller, K.R. The berlin brain-computer interface: Accurate performance from first-session in BCI-Naïve subjects. IEEETrans. Biomed. Eng. 2008, 55, 2452–2462.
[18] Pfurtscheller, G.; Neuper, C.; Muller, G.R.; Obermaier, B.; Krausz, G.; Schlogl, A.; Scherer, R.; Graimann, B.; Keinrath, C.; Skliris, D.; et al. Graz-BCI: State of the art and clinical applications. IEEE Trans. Neural Sys. Rehabil. Eng. 2003, 11, 1–4.
[19] Pander, T.; Przybyla, T.; Czabanski, R., "An application of detection function for the eye blinking detection," Human System Interactions, 2008 Conference on , vol., no., pp.287,291, 25-27 May 2008
[20] Udayashankar, A.; Kowshik, A.R.; Chandramouli, S.; Prashanth, H. S., "Assistance for the Paralyzed Using Eye Blink Detection," Digital Home (ICDH), 2012 Fourth International Conference on , vol., no., pp.104,108, 23-25 Nov. 2012
[21] Sammaiah, A.; Narsimha, B.; Suresh, E.; Reddy, M. Sanjeeva, "On the performance of wavelet transform improving Eye blink detections for BCI," Emerging Trends in Electrical and Computer Technology (ICETECT), 2011 International Conference on , vol., no., pp.800,804, 23-24 March 2011
[22] Panning, A.; Al-Hamadi, A.; Michaelis, B., "A color based approach for eye blink detection in image sequences," Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on , vol., no., pp.40,45, 16-18 Nov. 2011
[23] Jiang-Wei Li, "Eye blink detection based on multiple Gabor response waves," Machine Learning and Cybernetics, 2008 International Conference on , vol.5, no., pp.2852,2856, 12-15 July 2008
[24] Chambayil, B.; Singla, R.; Jha, R., "Virtual keyboard BCI using Eye blinks in EEG," Wireless and Mobile Computing, Networking and Communications (WiMob), 2010 IEEE 6th International Conference on , vol., no., pp.466,470, 11-13 Oct. 2010
[25] Rihana, S.; Damien, P.; Moujaess, T., "Efficient eye blink detection system using RBF classifier," Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE , vol., no., pp.360,363, 28-30 Nov. 2012
[26] Comparison of consumer brain–computer interfaces; Wikipedia, the free encyclopedia.
[27] Delorme A.; Makeig S., "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics”, Journal of Neuroscience Methods 134:9-21. 2004