
 

 

  
Abstract—A gene network gives the knowledge of the regulatory 

relationships among the genes. Each gene has its activators and 
inhibitors that regulate its expression positively and negatively 
respectively. Genes themselves are believed to act as activators and 
inhibitors of other genes. They can even activate one set of genes and 
inhibit another set. Identifying gene networks is one of the most 
crucial and challenging problems in Bioinformatics. Most work done 
so far either assumes that there is no time delay in gene regulation or 
there is a constant time delay. We here propose a Dynamic Time-
Lagged Correlation Based Method (DTCBM) to learn the gene 
networks, which uses time-lagged correlation to find the potential 
gene interactions, and then uses a post-processing stage to remove 
false gene interactions to common parents, and finally uses dynamic 
correlation thresholds for each gene to construct the gene network. 
DTCBM finds correlation between gene expression signals shifted in 
time, and therefore takes into consideration the multi time delay 
relationships among the genes. The implementation of our method is 
done in MATLAB and experimental results on Saccharomyces 
cerevisiae gene expression data and comparison with other methods 
indicate that it has a better performance. 
 

Keywords—Activators, correlation, dynamic time-lagged 
correlation based method, inhibitors, multi-time delay gene network.  

I. INTRODUCTION 
NE of the most important objectives in the post genomic 
era is to learn the inter-relationships amongst genes [1], 

and therefore, learning gene networks has become one of the 
most active research areas in bioinformatics. Realization of 
the gene network can be highly useful for applications like 
validating drug targets [2], discovering the higher order 
structures of organisms, and interpreting their behavior [3]. A 
gene network can be constructed by analyzing gene 
expression data obtained after microarray analysis [4]. Time 
series gene expression data gives the expression levels of the 
genes at successive time points. Thus, it contains rich 
information about the gene interactions. It is therefore 
desirable to extract this information from the gene expression 
data and use it to construct the gene network. However, due to 
noise and irregularity in gene expression data [5], it is difficult 
to learn the exact gene network as the problem is NP-complete 
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[6]. Although the currently available datasets provide gene 
expression values of a large number of genes, the data in the 
temporal dimension is very limited, i.e., the number of 
successive time measurements of a gene is far too less than the 
number of genes. Therefore, to estimate the gene network 
taking into account the multi-time delay relationships among 
the genes is a very challenging task, and some heuristics need 
to be applied to obtain the gene network efficiently and with a 
fairly good accuracy.  

Various computational methods have been used to model 
gene networks. Reference [7] adopted a Boolean network 
model of the gene network. Reference [8] learnt the gene 
regulations by linear regression. Reference [5] used the 
Bayesian networks to learn the gene network. The use of 
Bayesian network is extended in [1] and [9] by combining 
non-parametric regression [1] to detect the nonlinear 
relationship among genes and by making use of some 
biological information to improve the learning performance 
[9]. Reference [10] used dynamic Bayesian network and non-
parametric regression model to learn the gene network. In [6], 
a clustering technique was employed and an objective 
function was subsequently used to measure the degree of 
activation or inhibition of a gene by another gene.  They 
obtained a gene regulatory network where activator and 
inhibitor clusters were found. This technique, however, 
considered that a gene can either be in an activator cluster or 
in an inhibitor cluster. This might not always be the case as a 
gene may activate one gene and inhibit another. 

Recently, a few important facts relating to learning gene 
networks have been discovered. When a gene regulates 
another gene, there is a time delay between the changes of 
expression levels of the genes [3, 11]. Time delay in gene 
regulation results due to the delays in various related 
biological processes like transcription, translation, transport, 
etc. Researchers have tried to incorporate time delay into their 
models and assumed that the time delay is constant. Based on 
this assumption, a linear model was used to learn the gene 
network in [8]. References [12] and [13] used the dynamic 
Bayesian network (DBN) to model the time delay in the gene 
network. Some research [3] has shown that different gene 
pairs have different time delays for gene regulation. Reference 
[14] used Bayesian network framework and introduced a new 
structure learning algorithm to learn the multi-time delay gene 
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network. In [15], a supervised learning approach was used to 
learn the gene network by building decision-tree-related 
classifiers, which predict gene expression from the expression 
data of other genes. Reference [11] uses a mixed integer linear 
programming framework for inferring time delay in gene 
regulatory networks. 

Already signal processing techniques have widely been 
used in bioinformatics. References [16] and [17] provide a 
good review of the use of signal processing concepts in 
genomics and proteomics, and genomics signal processing. In 
this work, the focus is on the use of signal processing 
techniques on gene expression data. Most of the work till now 
on gene expression data is limited to detecting gene clusters, 
and little work has been done to find the gene network. 
Reference [18] used signal processing metrics like power 
spectral density, coherence, transfer gain, and phase shift to 
find the similarity in time series gene expression data. In [19], 
the gene network was modeled using multi-criterion 
optimization. They imposed various constraints on the genetic 
network model, based on biological knowledge about real 
genetic networks like limited connectivity, redundancy, 
stability and robustness, trying to cope up with the problem of 
less data. But they did not address the multi-time delay 
relationships among genes. Reference [20] used graphical 
Gaussian modeling and standard multivariate statistical 
techniques to deduce regulatory relationships from gene 
expression data. But it also did not consider the multi-time 
delay relationships among the genes. Therefore, most of the 
work done so far has not taken the specific advantage of the 
information hidden in the temporal aspect of data that is 
provided by the time-series gene expression data [18]. 

Correlation techniques also have been used in development 
of enzymatic pathways, and genetic interaction networks. 
Reference [21] used the Correlation Metric Construction 
(CMC) approach to model the reaction pathway for glycolytic 
biochemical system. It uses a time-lagged correlation metric as 
a measure of distance between reacting species. It had some 
drawbacks; still the example showed that even when the 
specific method of interaction is unknown or unmeasured, 
useful information could be inferred about the overall 
structure of a network from forced dynamic experiments [22]. 
In [22] also, the same concept of forced dynamic experiments 
was used to monitor gene transcription in response to a time-
varying input light intensity signal. It found correlation 
between the time-lagged profiles of genes, and the input light 
intensity signal. 

In short, the field of gene networks is still not fully 
explored, and especially the area of multi-time delay gene 
networks needs directed research efforts. This work uses 
correlation techniques to analyze the gene expression data and 
solve the multi time delay gene network problem. Correlation 
between time-shifted expression values of different pairs of 
genes is calculated and the potential activator & inhibitor 
relationships between the genes are estimated. Post-processing 
of these potential relationships is also proposed to remove the 
false relationships between genes due to a common parent. 
Finally, dynamic correlation thresholds for each gene are used 
to determine the final relationships among genes. 

The rest of the paper is organized as follows. In Section 2, a 
brief overview of signal processing is presented with special 
focus on correlation techniques. The major contribution of our 
paper is discussed in Section 3, which describes the multi-time 
delay gene network model followed by the proposed dynamic 
time-lagged correlation based method (DTCBM) to obtain the 
multi-time delay gene network. Experimental results and 
comparison on two real datasets of yeast are presented in 
Section 4, followed by the conclusion in Section 5.  

II. SIGNAL PROCESSING PRELIMINARIES 

A. Gene Expression as a Discrete Time Signal 
A discrete time signal [ ]x n  is a set of measurements x  

made at discrete evenly spaced time points n . The function 
[ ]x n  is defined only for integer values of n . The gene 

expression values of a gene can be treated as a discrete time 
signal. Therefore, we have as many discrete time signals as 
the number of genes. Various signal processing metrics can 
then be applied on these signals to find the time delayed 
dependencies between them, which can give the knowledge of 
the gene network. Here, these signals are assumed to be time-
invariant, i.e., although the measurements of the expression 
values change over time, but their variability does not change 
[18]. This means that the behavior of a gene does not change 
with time. If it regulates some gene, it will always do so under 
similar conditions. This is an important assumption, given the 
fact that the biological systems are highly dynamic and can be 
infinitely complex in nature. Still, this is assumed correct, 
although it is difficult to be proved. Here, we do not intend to 
prove it, rather we will stick to the assumption that the signals 
of gene expression are time invariant.  

B. Correlation Techniques 
Correlation is used to determine the extent to which two 

signals are related, either positively or negatively. The result 
of correlation is expressed as correlation coefficients, whose 
value can lie between -1.0 to 1.0. A value closer to -1.0 or 1.0 
indicates strong dependence between the signals, negatively 
and positively respectively. A value close to 0.0 suggests that 
the signals are independent. 

Let x[n] and y[n] represent two discrete time signals. The 
true cross-covariance ( )xy mφ  of these signals is the cross-

correlation of the mean-removed sequences: 
*( ) [( )( ) ]xy n m x n ym E x yµ µ+φ = − −       (1) 

where [ ]E  is the expected value operator, xµ  and yµ  

are the mean values of the two stationary random processes: 
1

0

1 N

x i
i

x
N

µ
−

=

= ∑ ; and 
1

0

1 N

y i
i

y
N

µ
−

=

= ∑        (2) 

Therefore, cross-covariance at a time lag of m  time points 
is: 
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Finally, the correlation coefficient of sequences x[n] and 
y[n] with a time lag of m is obtained as: 

( )
( )

(0) (0)
xy

xy
xx yy

m
C m

φ
=

φ φ
         (4) 

The squared correlation coefficient is the proportion of 
variance in y[n] that can be accounted for by knowing x[n]. 
Conversely, it is the proportion of variance in x[n] that can be 
accounted for by knowing y[n]. 

III.  CORRELATION ANALYSIS OF GENE EXPRESSION DATA 

A. The Multi-Time Delay Gene Network Model 

In general, gene regulation is described as follows: gene 1g  

is said to regulate gene 2g  positively if 1g  transcripts to 

mRNA 1r  and generates a specific protein p1, which activates 

the expression of 2g  and thus increases the expression of 

2g . Similarly, 1g  regulates 2g  negatively if the expression 

level of 2g  reduces with increase in expression of 1g . It is 
well known that there exists some finite time delay between 
the expression of an activator/inhibitor gene and the 
expression of the gene which it is regulating. The time delay 
intervals between their expression may also be different for 
different gene pairs. It is further known that there should be a 
maximum time delay interval in a gene network since the time 
of a cell cycle is limited [14]. The gene expression datasets 
that are available presently capture the gene expression values 
of genes every 10-30 minutes. In general, an 
activator/inhibitor gene can regulate another gene either 
instantly, or in the next time slice or after two time slices or up 

to maxτ  time slices. The parameter maxτ  indicates the 
maximum delay within which a gene can regulate another 
gene. So the gene expression signal of each gene is correlated 
with other expression signals of other genes with a maximum 

lag of maxτ  time slices. 
An important advantage of this gene network model is that 

it does not require any discretization thresholds. It is well 
known that discretization leads to loss of information.  This is 
one of the major defects of the Boolean model of gene 
network, where the gene can be either active or inactive. By 
discretizing, significant change in expression value can be 
missed. Also, an increase in expression value of a gene in the 
inactive state can be misinterpreted, if the gene is still inactive 
according to the discretization thresholds, and vice-versa. 
Therefore, better approach is to focus on the relative change in 
the expression values, rather than absolute values. 

This correlation based approach places the limitation that 
any gene cannot regulate itself. This is because the correlation 
coefficient of each gene expression signal with itself, at zero 

time lag, i.e., (0)iiC  for gene ig , will always be 1.00, 
implying that each gene is an activator of itself. Therefore, 
such interactions are not considered and it is assumed that 
genes are not self regulated. This is reasonable also since if a 
gene was to regulate itself, either because of positive feedback 
its expression value will go on increasing indefinitely (in the 
case of activation), or because of negative feedback, its 
expression value will remain constant (in case of inhibition). 
The first case is certainly impractical, and the genes belonging 
to the second case do not appear to be involved in regulation, 
as their expression levels do not change significantly. Thus, 
they are not of interest for estimation of the gene network, and 
will be filtered out initially. 

To summarize, the model takes into consideration the 
following features of the gene network: 
1)  Genes can have more than one activators and inhibitors.  
2)  No gene can be an activator or inhibitor of itself. 
3)  Maximum delay in gene regulation can be maxτ  time 

slices. 
4)  A gene can activate one gene and inhibit another 

B. Dynamic Time-Lagged Correlation based Method 
DTCBM has five stages viz., preprocessing, finding the 

time-lagged correlation matrix, applying decision rule to get 
potential activators and inhibitors, post-processing, and 
applying dynamic correlation thresholds to get final activators 
and inhibitors. 
1)  Preprocessing: The genes that have too many missing 

values in the dataset are removed. And, for a single 
missing value between two time slices, linear 
interpolation is used. Then, the genes that show very little 
variation over time are filtered away as it indicates that 
they are not involved in the process of regulation. For 
filtering, the criteria used is that the standard deviation of 
the expression level of the gene over all time slices must 
be greater than devmin, i.e., 

      dev = 
2

1
( )

n

i
i

x x

n
=

−
≥

∑
 devmin                                (5) 

            devmin    =   0.01 x  range                       (6) 
where 
 xi is the expression value of the gene at ith time slice; 
x is the average value of the gene over all time slices; 
 n is the number of time slices; and 
 range is the range of expression values in the dataset. 
After preprocessing step, we have the gene expression 
matrix, [ ]E m n× , where m is the number of genes and n 
is the number of time slices. 

2) Finding time-lagged correlation matrix: Correlation 
between all ordered pairs of genes with all allowed time 
lags is calculated and stored in a 3-dimensional array, 

max[ ( 1)]C m m τ× × + . The entries of matrix C  are 
obtained as follows: 
         [ , , ] ( )i jC i j k C k= −          (7) 
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jkτ −
jg

ig

kg

jiτ − kiτ −

jkτ +

 
 

Fig. 1 False edge between jg  and kg  because of a common parent ig . The label on the edges represents the time delay, and the sign 

indicates whether it is an activator (+) or inhibitor (-) 
 

∀ 1 ,i m≤ ≤   1 ,j m≤ ≤ max0 k τ≤ ≤  

where ij ( )C k− is defined as in (4). 

The entry [ , , ]C i j k  is the correlation coefficient of the 

expression signal of gene ig  shifted left by k  time slices 

and, the expression signal of gene jg . If this coefficient 
is high (may be positive or negative), it implies that gene 

jg  regulates gene ig . 
3) Applying decision rule to get potential activators and 

inhibitors: After the time-lagged correlation matrix C  is 
obtained, it is analyzed for the activators and inhibitors of 
each gene. The 2-dimensional matrix [ ,:,:]C i  contains 
all the correlation information of the left time shifted 
signal of gene ig  with all other genes. Therefore, it has 

all the information about the regulators of gene ig . The 
following decision rule is used to find the potential 
regulators of gene ig : gene jg  is considered to be a 

potential regulator of gene ig  with a time delay of k  
time slices, if the maximum(minimum) of the one-
dimensional array [ , ,:]C i j  is [ , , ]C i j k , and it is 
greater(smaller) than a threshold correlation 

min min( )λ λ− , i.e., 

gene jg  activates gene ig  after k  time slices if, 

min[ , , ] max( [ , ,:])C i j k C i j λ= ≥   max0 k τ≤ ≤   (8) 

gene jg  inhibits gene ig  after k  time slices if, 

min[ , , ] min( [ , ,:])C i j k C i j λ= ≤ − max0 k τ≤ ≤   (9) 

where minλ  is a predefined threshold discussed later in this 
section. 
4) Post-processing: The relationships obtained by the 

previous stage may contain many false positives. Two 
genes will appear to have high correlation if both have  

 
same parents. E.g. if gene ig  regulates both jg  and kg  

with a time delay of jiτ  and kiτ  respectively, then jg  

and kg  will have high correlation with a time delay equal 

to the difference of jiτ  and kiτ . So, kg  might be 

considered an regulator of jg . If the time delay and 

nature (activation/inhibition) of this relationship is in 
accordance with the above two relationships and its 
correlation coefficient is less than maxλ , it is removed in 
this stage. Fig. 1 shows three genes having such a 
relationship. Mathematically, 
Find all gene triplets , ,  and i j kg g g , such that 

jk ji kiτ τ τ= −  and   jk ji kiv v v= ×       (10) 

max max(| [ , ,:] |)if C j k λ<  

then remove the edge k jg g→  

where  
1      activates  
1      inhibits  

j i
ij

j i

if g g
v if g g

+⎧
= ⎨−⎩

 

maxλ  is a predefined threshold discussed in the 
next subsection. 

5) Dynamic correlation thresholding: There are several 
methods of determining correlation thresholds: 

• Pre-selected thresholds: The thresholds can be 
made fixed irrespective of the data used, as used in 
[22]. 

• Data dependent thresholds: Thresholds depend on 
the dataset. For example, mean of the data values. 

Both these methods have their limitations. While the first 
method is totally insensitive to the type if data used, the 
second one may become too sensitive to the data, and both can 
lead to inaccurate results. Used here is a hybrid of the two 
approaches, where the thresholds are dependent on the data 
within a range. We use two fixed thresholds minλ  and maxλ , 

with min maxλ λ< . For determining the 
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Fig. 2 Block Schematic of the Dynamic Time-Lagged Correlation based Method 

 
regulators of genes, a correlation threshold iλ  is 
determined for each gene, which depends on its 
correlation coefficients with its potential parents up to 
stage 4. iλ  is the mean of these correlation coefficients. 

This final threshold is intended to be kept between minλ  

and maxλ , and therefore if the calculated threshold 

exceeds maxλ , it is rejected and maxλ  is used for the 
decision rule. Mathematically, 

'( )mean Cλ =  

where 
' {max(| [ , ,:] |) |  edge 

         retained after post-processing}
j iC C i j g g= →

 

  
max

max max
i

λ λ λ
λ

λ λ λ
≤⎧

= ⎨ >⎩
       (11) 

The block schematic of various stages in the DTCBM is 
presented in Fig. 2. The implementation of the DTCBM is 
done in MATLAB, and its time complexity is 

3 2( )O m m n+ , where m  is the number of genes, and n  is 
the number of time slices in the dataset. 

IV. EXPERIMENTS AND RESULTS 
To evaluate the performance of the proposed method, the 

Saccharomyces cerevisiae cell cycle gene expression data [23] 
was analyzed. Here, the cdc15 dataset was used as it has the 
maximum number of gene expression measurements with 
constant time interval between them (10 minutes). We used 
two set of genes and estimated the subnetwork for them, and 
compared them with networks already learnt so far. For all 
experiments, the parameters were set as following: 

The maximum time delay, maxτ  is set to 4, i.e., 40 minutes,   
since the time of single cell cycle of S. Cerevisiae is about 1.5 
hours [14]. The lower correlation threshold minλ  is set to 

0.70, and the upper correlation threshold maxλ  is set to 0.80.  
For comparison of results, the following parameters are 

used: 

Accuracy, 
ωα
ξ

= , which is a measure of the capability of the 

algorithm to recover the correct edges.  

Precision, 
ωρ

ω χ
=

+
, which is the chance that a edge 

detected by an algorithm is correct. 
where   ω  indicates the number of true positives; 

χ  indicates the number of false positives; and 
ξ  indicates the total number of edges in the target 

network 

A. Experiment 1 
First, the algorithm was tested with the set of genes used in 

[10] to find the subnetwork and compared it with the actual 
network and the one published in [10] using DBNNR method. 
It included the following fourteen genes: FUS3, FAR1, SWI4, 
SWI6, CLN1, CLN2, CDC28, CLN3, MBP1, SIC1, CLB5, 
CLB6, CDC20, and CDC6. The target subnetwork (registered 
in KEGG [24] database), the one obtained in [10], and the one 
estimated by DTCBM, are shown in Fig. 3. The edges in the 
dotted circles can be considered as correct as they represent 
co-regulated clusters. The number of edges in the target 
network is not known exactly, as edges from one cluster to 
another implies that edges from all genes of first cluster to all 
genes of second one are also correct. Therefore, accuracy is 
difficult to be determined. Therefore, the number of correct 
edges recovered is taken as a measure of accuracy. The 
comparison of DTCBM with DBNNR indicates that DTCBM 
was able to capture more true positives, thereby having a 
higher accuracy, and simultaneously, the precision was also 
better. The results in tabular form are presented in Table I. 

 

B. Experiment 2 
As a second experiment with another set of genes, the 

comparison of the subnetwork obtained was performed with 
the one published in [15]. It included the following genes: 
CLN2, CLN1, CDC20, MBP1, SWI5, CLB2, SKP1, CLN3, 
CLB1, CLB6, CLB5, and CDC34. The network published in 
[15], and the one estimated by DTCBM are shown in Fig. 4. 
DTCBM was able to capture 26 edges, out which 19 were 
correct edges. There were a total of 30 edges in the target 
network. Not only most of the edges were detected accurately, 
the edge-characteristics, i.e., activation/inhibition and time 
delay also matched with that found in [15]. Overall, the results 
indicate that DTCBM scores an accuracy of 63% and 
precision of 73% on this dataset, as shown in Table II. 
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(a) Target network (b) Network obtained by DBNNR method [10]

(c) Network obtained by the proposed DTCBM
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Fig. 3 Gene networks obtained during experiment 1. (a) The real sub network registered in KEGG [24]. (b) The gene network structure 
obtained by DBNNR [10] (c) The gene network structure obtained by DTCBM. Black arrows represent true edges and grey arrows represent 

false edges. Brown edges with a rounded head represent reversed edges or edges that bypassed one gene. The number on a true edge represents 
the time delay and the sign indicates whether it is an activator (+) or inhibitor (-). A double headed arrow is equivalent to two opposite single 

headed arrows) 
 

TABLE I 
EXPERIMENT 1 RESULTS  

Algorithm True 
positives(ω ) 

False
Reversed 

edges/one gene 
bypassed 

Positives( χ ) 
False edges 

Precision 
( ρ ) 

DBNNR 5 7 5 0.294 
DTCBM 10 7 4 0.476 

 
 TABLE II 

EXPERIMENT 2 RESULTS  
Algorithm True 

positives 
(ω ) 

False
Reversed 

edges/one gene 
bypassed 

Positives( χ ) 
False edges 

Accuracy 

(α ) 

Precision  
( ρ ) 

 

DTCBM 19 2 5 0.633 0.730 
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CLN2 CLN1 CDC20 CLN2

SWI5 CLB2 SKP1

CLN3 CLB1 CLB6 CLB5 CLN2

(a) Target network published in [15] (b) Network obtained by the proposed DTCBM

True edges (True positives)

False edges

Reversed edges/Edges that 
bypassed one gene (False positives)}

CLN2 CLN1 CDC20 CLN2

SWI5 CLB2 SKP1

CLN3 CLB1 CLB6 CLB5 CLN2

0-

0+

0+

0+

0-

0+0+

0+

0-
1-

1+

0+

 
 

Fig. 4 Gene networks obtained during experiment 2. (a) The target sub network published in [15] (b) The gene network structure obtained by 
DTCBM. Black arrows represent true edges and grey edges represent false edges. Brown edges with a rounded head represent reversed edges 

or edges that bypassed one gene. The number on a true edge represents the time delay and the sign indicates whether it is an activator (+) or 
inhibitor (-). A double headed arrow is equivalent to two opposite single headed arrows) 

V. CONCLUSION 
The dynamic time-lagged correlation based method 

proposed in this paper estimates the multi-time delay gene 
network using correlation between gene expression signals 
shifted in time. Other contributions of the paper are a post-
processing stage to remove false gene interactions and a 
dynamic thresholding system which allows the correlation 
threshold to vary in a fixed range. One of the main advantages 
of the algorithm is that the gene expression data need not be 
discretized, which eliminates the need of any pre-defined 
discretization thresholds. Experimental results and comparison 
with other gene network learning algorithms indicate that the 
DTCBM has a better performance both in terms of accuracy 
and precision. 

However, the present work has some limitations as well. 
Here, linear correlation is used assuming that the gene 
regulatory relationships are linear, which may not be true. 
Also, the high correlation is interpreted as causation, which 
may not be necessarily true always. Another point is that 
correlation does not indicate the direction of causation. But 
one of the most important conditions required to interpret high 
correlation as causation is met in this work, which is that the 
caused event must take place after the causing event. This is 
achieved because the algorithm finds the correlation between 
the time-shifted gene expression signals. This also takes care 
of the direction of the causation. Still, the presence of false 
positives with high correlation indicates that the method is not 
perfect, although many false positives are removed in the 
post-processing stage. Therefore, additional inputs may be 
required, either in the form of more expression data, or some 
biological information. We would like to work in this 
direction in future. Future work also includes using non-linear 
correlation for the problem, and designing a more robust  

 
correlation threshold determining system. Combining datasets 
of unequal time slice spacing is also an important issue. 
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