Search results for: solar and wind energy potential
3432 Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies
Authors: Minky Son, Chanin Park, Ayoung Baek, Shalini John, Keun Woo Lee
Abstract:
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we performed structure-based pharmacophore modeling combined with molecular dynamics (MD) simulation. Four HMGR inhibitors were used for MD simulation and representative structure of each simulation were selected by clustering analysis. Four structure-based pharmacophore models were generated using the representative structure. The generated models were validated used in virtual screening to find novel scaffolds for inhibiting HMGR. The screened compounds were filtered by applying drug-like properties and used in molecular docking. Finally, four hit compounds were obtained and these complexes were refined using energy minimization. These compounds might be potential leads to design novel HMGR inhibitor.
Keywords: Anti-hypercholesterolemia drug, HMGR inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19523431 Study on Carbon Nanostructures Influence on Changes in Static Friction Forces
Authors: Rafał Urbaniak, Robert Kłosowiak, Michał Ciałkowski, Jarosław Bartoszewicz
Abstract:
The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.Keywords: Carbon nanotubes, static friction, dynamic friction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18693430 Nanotechnology Innovations for the Sustainable Buildings of the Future
Authors: Aysin Sev, Meltem Ezel
Abstract:
Sustainability, being the urgent issue of our time, is closely related with the innovations in technology. Nanotechnology (NT), although not a new science, can be regarded relatively a new science for buildings with brand new materials and applications. This paper tends to give a research review of current and near future applications of nanotechnology (NT) for achieving high-performance and healthy buildings for a sustainable future. In the introduction, the driving forces for the sustainability of construction industry are explained. Then, the term NT is defined, and significance of innovations in NT for a sustainable construction industry is revealed. After presenting the application areas of NT and nanomaterials for buildings with a number of cases, challenges in the adoption of this technology are put forward, and finally the impacts of nanoparticles and nanomaterials on human health and environment are discussed.
Keywords: Nanomaterial, self-healing concrete, self-cleaning sensor, nano sensor, steel, wood, aerogel, flexible solar panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60683429 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection
Authors: K. S. Hui, K. N. Hui, Seong Kon Lee
Abstract:
Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.
Keywords: Metal ions, waste water, methane, volatile organic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22613428 Partial Oxidation of Methane in the Pulsed Compression Reactor: Experiments and Simulation
Authors: Timo Roestenberg, Maxim Glushenkov, Alexander Kronberg, Anton A. Verbeek, Theo H. vd Meer
Abstract:
The Pulsed Compression Reactor promises to be a compact, economical and energy efficient alternative to conventional chemical reactors. In this article, the production of synthesis gas using the Pulsed Compression Reactor is investigated. This is done experimentally as well as with simulations. The experiments are done by means of a single shot reactor, which replicates a representative, single reciprocation of the Pulsed Compression Reactor with great control over the reactant composition, reactor temperature and pressure and temperature history. Simulations are done with a relatively simple method, which uses different models for the chemistry and thermodynamic properties of the species in the reactor. Simulation results show very good agreement with the experimental data, and give great insight into the reaction processes that occur within the cycle.Keywords: Chemical reactors, Energy, Pulsed compressionreactor, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16453427 Design of One – Dimensional Tungsten Gratings for Thermophotovoltaic Emitters
Authors: Samah. G. Babiker, Shuai Yong, Mohamed Osman Sid-Ahmed Xie Ming, A.M. Abdelbagi
Abstract:
In this paper, a one - dimensional microstructure tungsten grating (pyramids) is optimized for potential application as thermophotovoltaic (TPV) emitter. The influence of gratings geometric parameters on the spectral emittance are studied by using the rigorous coupled-wave analysis (RCWA).The results show that the spectral emittance is affected by the gratings geometrical parameters. The optimum parameters are grating period of 0.5µm, a filling ratio of 0.8 and grating height of h=0.2µm. A broad peak of high emittance is obtained at wavelengths between 0.5 and 1.8µm. The emittance drops below 0.2 at wavelengths above 1.8µm. This can be explained by the surface plasmon polaritons excitation coupled with the grating microstructures. At longer wavelengths, the emittance remains low and this is highly desired for thermophotovoltaic applications to reduce the thermal leakage due to low-energy photons that do not produce any photocurrent. The proposed structure can be used as a selective emitter for a narrow band gap cell such as GaSb. The performance of this simple 1-D emitter proved to be superior to that from more complicated structures. Almost all the radiation from the emitter incident, at angles up to 40°, on the cell, could be utilized to produce a photocurrent. There is no need for a filter.
Keywords: Thermophotovoltaic, RCWA, Grating, Emittance, Surface plasmon polaritons
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22313426 Evaluation of Progressive Collapse of Transmission Tower
Authors: Jeong-Hwan Choi, Hyo-Sang Park, Tae-Hyung Lee
Abstract:
The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed.
Keywords: Transmission tower, OpenSEES, pushover analysis, progressive collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16473425 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7073424 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: Semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6643423 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index
Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, Chang Kyoo Yoo
Abstract:
This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.
Keywords: Indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17213422 Generalization Kernel for Geopotential Approximation by Harmonic Splines
Authors: Elena Kotevska
Abstract:
This paper presents a generalization kernel for gravitational potential determination by harmonic splines. It was shown in [10] that the gravitational potential can be approximated using a kernel represented as a Newton integral over the real Earth body. On the other side, the theory of geopotential approximation by harmonic splines uses spherically oriented kernels. The purpose of this paper is to show that in the spherical case both kernels have the same type of representation, which leads us to conclusion that it is possible to consider the kernel represented as a Newton integral over the real Earth body as a kind of generalization of spherically harmonic kernels to real geometries.Keywords: Geopotential, Reproducing Kernel, Approximation, Regular Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13023421 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients
Authors: B. Kabane, G. G. Redhi
Abstract:
An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.
Keywords: Separation, activity coefficients, ionic liquid, methyltrioctylammonium chloride, capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7393420 Biogas Control: Methane Production Monitoring Using Arduino
Authors: W. Ait Ahmed, M. Aggour, M. Naciri
Abstract:
Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.Keywords: Biogas, Arduino, processing, code, methane, gas sensor, program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35503419 Design and Development of iLON Smart Server Based Remote Monitoring System for Induction Motors
Authors: G. S. Ayyappan, M. Raja Raghavan, R. Poonthalir, Kota Srinivas, B. Ramesh Babu
Abstract:
Electrical energy demand in the World and particularly in India, is increasing drastically more than its production over a period of time. In order to reduce the demand-supply gap, conserving energy becomes mandatory. Induction motors are the main driving force in the industries and contributes to about half of the total plant energy consumption. By effective monitoring and control of induction motors, huge electricity can be saved. This paper deals about the design and development of such a system, which employs iLON Smart Server and motor performance monitoring nodes. These nodes will monitor the performance of induction motors on-line, on-site and in-situ in the industries. The node monitors the performance of motors by simply measuring the electrical power input and motor shaft speed; coupled to genetic algorithm to estimate motor efficiency. The nodes are connected to the iLON Server through RS485 network. The web server collects the motor performance data from nodes, displays online, logs periodically, analyzes, alerts, and generates reports. The system could be effectively used to operate the motor around its Best Operating Point (BOP) as well as to perform the Life Cycle Assessment of Induction motors used in the industries in continuous operation.
Keywords: Best operating point, iLON smart server, motor asset management, LONWORKS, Modbus RTU, motor performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7253418 The Study on Mechanical Properties of Graphene Using Molecular Mechanics
Authors: I-Ling Chang, Jer-An Chen
Abstract:
The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.Keywords: Energy minimization, fracture, graphene, molecular mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18643417 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition
Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover
Abstract:
Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.
Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30753416 Natural Ventilation as a Design Strategy for Energy Saving
Authors: Zahra Ghiabaklou
Abstract:
Ventilation is a fundamental requirement for occupant health and indoor air quality in buildings. Natural ventilation can be used as a design strategy in free-running buildings to: • Renew indoor air with fresh outside air and lower room temperatures at times when the outdoor air is cooler. • Promote air flow to cool down the building structure (structural cooling). • Promote occupant physiological cooling processes (comfort cooling). This paper focuses on ways in which ventilation can provide the mechanism for heat dissipation and cooling of the building structure..It also discusses use of ventilation as a means of increasing air movement to improve comfort when indoor air temperatures are too high. The main influencing factors and design considerations and quantitative guidelines to help meet the design objectives are also discussed.Keywords: Natural Ventilation, Sustainable Building, Passive Cooling, Energy Saving
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26813415 The Numerical Study of Low Level Jets Formation in South Eastern of Iran
Authors: Mehdi Salehi Barough, Saviz Sehat Kashani, A.A. Bidokhti, A.Ranjbar
Abstract:
The presence of cold air with the convergent topography of the Lut valley over the valley-s sloping terrain can generate Low Level Jets (LLJ). Moreover, the valley-parallel pressure gradients and northerly LLJ are produced as a result of the large-scale processes. In the numerical study the regional MM5 model was run leading to achieve an appropriate dynamical analysis of flows in the region for summer and winter. The results of this study show the presence of summer synoptical systems cause the formation of north-south pressure gradients in the valley which could be led to the blowing of winds with the velocity more than 14 ms-1 and vulnerable dust and wind storms lasting more than 120 days. Whereas the presence of cold air masses in the region in winter, cause the average speed of LLJs decrease. In this time downslope flows are noticeable in creating the night LLJs.Keywords: Cold advection, Low Level Jet, MM5 Model, Pressure gradient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15293414 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder
Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini
Abstract:
In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.
Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29713413 Procedure for Impact Testing of Fused Recycled Glass
Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi
Abstract:
Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.
Keywords: Construction materials, drop weight impact, impact testing, recycled glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15433412 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry
Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh
Abstract:
The demand for energy is cumulatively increasing with time. Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields. In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector. The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India. A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system. The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C). Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.
Keywords: Organic rankine cycle, regenerative organic rankine cycle, waste heat recovery, Indian industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12733411 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture
Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir
Abstract:
Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.
Keywords: Cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11183410 Synthesis of Sterile and Pyrogen Free Biogenic Magnetic Nanoparticles: Biotechnological Potential of Magnetotactic Bacteria for Production of Nanomaterials
Authors: Saeid Ghorbanzadeh-Mashkani, Parisa Tajer-Mohammad-Ghazvini, Ahmad Nozad-Golikand, Rouha Kasra-Kermanshahi, Mohammad-Reza Davarpanah
Abstract:
Today, biogenic magnetite nanoparticles among magnetic nanoparticles have unique attracted attention because of their magnetic characteristics and potential applications in various fields such as therapeutic and diagnostic. A well known example of these biogenic nanoparticles is magnetosomes of magnetotactic bacteria. In this research, we used two different types of technique for the isolation and purification of magnetosome nanoparticles from the isolated magnetotactic bacterial cells, heat-alkaline treatment and sonication. Also we evaluated pyrogen content and sterility of synthesized the isolated individual magnetosome by the Limulus Amoebocyte Lysate test and direct impedimetric method respectively.Keywords: Biogenic magnetic nanoparticles, Magnetosome, Magnetotactic bacteria, Nanobiotechnology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29033409 Cascaded H-Bridge Five Level Inverter Based Selective Harmonic Eliminated Pulse Width Modulation for Harmonic Elimination
Authors: S. Selvaperumal, M. S. Sivagamasundari
Abstract:
In this paper, selective harmonic elimination pulse width modulation technique is employed to eliminate lower order harmonics like third by determination of solving non-linear equations. The cascaded H-bridge five level inverter is driven by the Peripheral Interface Controlled (PIC) Microcontroller 16F877A. The performance of single phase cascaded H-bridge five level inverter with relevant to harmonics and a variety of switches with solar cell as its input source is simulated by employing MATLAB/Simulink. A hardware model is developed to verify the performance of the developed system.
Keywords: Multilevel inverter, cascaded H-Bridge multilevel inverter, total harmonic distortion, selective harmonic elimination pulse width modulation, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8313408 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications
Authors: G. Korotcenkov, V. Brinzari, B. K. Cho
Abstract:
The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.Keywords: Energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14233407 Cooperative Data Caching in WSN
Authors: Narottam Chand
Abstract:
Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27633406 Consumer Adoption - Risk Factor of Mobile Banking Services
Authors: Esad Kadušić, Petar Bojović, Amela Žgalj
Abstract:
Mobile banking services present a unique growth opportunity for mobile operators in emerging markets, and have already made good progress in bringing financial services to the previously unbanked populations of many developing countries. The potential is amazing, but what about the risks? In the complex process of establishing a mobile banking business model, many kinds of risks and factors need to be monitored and well-managed. Risk identification is the first stage of risk management. Correct risk identification ensures risk management effectiveness. Keeping the risks low makes it possible to use the full potential of mobile banking and carry out the planned business strategy. The focus should be on adoption of consumers which is the main risk factor of mobile banking services.Keywords: Consumer Adoption, Mobile Banking, Risk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24843405 Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution
Authors: H. C. O. Reis, A. S. Cossolin, B. A. P. Santos, K. C. Castro, G. M. Pereira, V. C. Silva, P. T. Sousa Jr, E. L. Dall’Oglio, L. G. Vasconcelos, E. B. Morais
Abstract:
In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 °C). According to Dubinin–Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.
Keywords: Color removal, kinetic and isotherm studies, thermodynamic parameters, FTIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9853404 Application Potential of Selected Tools in Context of Critical Infrastructure Protection and Risk Analysis
Authors: Hromada Martin
Abstract:
Risk analysis is considered as a fundamental aspect relevant for ensuring the level of critical infrastructure protection, where the critical infrastructure is seen as system, asset or its part which is important for maintaining the vital societal functions. Article actually discusses and analyzes the potential application of selected tools of information support for the implementation and within the framework of risk analysis and critical infrastructure protection. Use of the information in relation to their risk analysis can be viewed as a form of simplifying the analytical process. It is clear that these instruments (information support) for these purposes are countless, so they were selected representatives who have already been applied in the selected area of critical infrastructure, or they can be used. All presented fact were the basis for critical infrastructure resilience evaluation methodology development.
Keywords: Critical infrastructure, Protection, Resilience, Risk Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16223403 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation
Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince
Abstract:
In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23◦C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35◦C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.
Keywords: Ambient anaerobic digestion, biogas recovery, poultry manure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641