Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30455
Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: separation, Capacity, ionic liquid, activity coefficients, methyltrioctylammonium chloride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74

References:


[1] W. Liu, Y. Ri, K. Ma, X. Xu, Z. Zhu, Y. Wang, Fluid Phase Equilib. 443 (2017) 44-49.
[2] US6200366-Separation of alkenes and alkanes, USA Patent (2001), http://www.google.com/patents/US6200366?utmsourse=gb-gbplus-sharePatent.
[3] J. Pernak, M. Śmiglak, S.T. Griffin, W.L. Hough, T.B. Wilson, A. Pernak, J. Zabielska-Matejuk, A. Fojutowski, K. Kita, R.D. Rogers, Green Chem. 8 (2006) 798-806.
[4] J. Bergh, C. Gucuyenar, E.A. Pidko, E.J.M. Hensen, J. Gascon, F. Kapteijn, Chem. Eur. J. 17 (2011) 8832-8840.
[5] D. Peralta, G. Chaplais, A. Simon-Masseron, K. Barthelet, C. Chizallet, A.A. Quoineaud, G.D. Pirngruber, J. Am. Chem. Soc. 134 (2012) 8115-8126.
[6] M. Azhin, T. Kaghazchi, M. Rahmani, Ind. Eng. Chem. 14 (2008) 622–638.
[7] H. Bux, C. Chmelik, R. Krishna, J. Caro, J. Membr. Sci. 369 (2011) 284–289.
[8] Z. Lei, W. Arlt, P. Wasserscheid, Fluid Phase Equilib. 241 (2006) 290–299.
[9] J. Pernak, J. Feder-Kubis, Chem. Eur J. 11 (2005) 4441-4449.
[10] P. Hapiot, C. Lagrost, Chem. Rev. 108 (2008) 2238-2264.
[11] J. Pernak, J. Feder-Kubis, Chem. Eur J. 11 (2005) 4441-4449.
[12] J. Cybulski, A. Wisniewska, A.K. Adamiak, Z. Dabrowski, T. Praczyk, A. Michalczyk, F. Walkiewicz, K. Materna, J. Pernak, Tetrahedron Lett. 52 (2011) 1325-1328.
[13] M. Wlazło, U. Domańska, Separ. Purif. Technol. 162 (2016) 162-170.
[14] U. Domanska, M. Wlazlo, K. Paduszynski, Separ. Purif. Technol. (2017) 10.1016/j.seppur. 2017.05.056.
[15] B. Kabane, R. Chokkareddy, G. G. Redhi, J. Chem. Thermodyn. 137 (2019) 7-12.
[16] U. Domańska, P. Papis, J. Szydłowski, J. Chem. Thermodyn. 77 (2014) 63-70.
[17] W.E. Acree Jr, G.A. Baker, F. Mutelet, J-Ch Moise, J. Chem. Eng. Data 56 (2011) 3688-3697.
[18] P. Okuniewska, U. Domanska, M. Wieckowski, J. Mierzejewska, Sep. Pur. Techn. 183 (2017) 11-20
[19] U. Domanska, P. Okuniewska, K. Paduszyński, M. Królikowska, M. Zawadzki, M. Wieckowski, J. Phys. Chem. B. 121 (2017) 7689-7698.
[20] M. Wlazło, U. Domańska, Separ. Purif. Technol. 162 (2016) 162-170.
[21] U. Domanska, M. Wlazlo, K. Paduszynski, Separ. Purif. Technol. (2017 10.1016/j.seppur.2017.05.056
[22] U. Domańska, P. Papis, J. Szydłowski, J. Chem. Thermodyn. 77 (2014) 63-70.
[23] U. Domanska, A. Marciniak, J. Chem. Thermodyn. 40 (2008) 860-866.
[24] T. M. Letcher, P. G. Whitehead, J. Chem. Thermodyn. 28 (1996) 843–849.
[25] W. C. Moollan, M.Sc. Thesis, University of Natal, Durban. 1993.
[26] D.H. Everett, Trans. Faraday Soc. 61 (1965) 1637-1645.
[27] A.J.B. Cruickshank, B.W. Gainey, C.P. Hicks, T.M. Letcher, R.W. Moody, C.L. Young, Trans. Faraday Soc. 65 (1996) 1014-1031.
[28] B.E. Poling, J.M. Prausnitz, Properties of Gases and Liquids (online), McGraw-Hill Publishing, 2001. Available from: http://lib.myilibrary.com? ID=91317
[29] U. Domanska, A. Wisniewska, Z. Dabrowski, M. Karpinska, Fluid Phase Equilib. 460 (2018) 155-161.
[30] N.V. Gwala, N. Deenadayalu, K. Tumba, D. Ramjugernath, J. Chem. Thermodyn. 42 (2009) 256-261.
[31] M. Karpinska, M. Wlazlo, D. Ramjugernath, P. Naidoo, U. Domanska, RSC Adv 7 (2017) 7092-7107.
[32] B. Kabane, G.G. Redhi, Fluid Phase Equilib. 493 (2019) 181-187.
[33] M. Wlazlo, A. Marciniak, M. Zawadzki, B. Dudkiewicz, J. Chem. Thermodyn. 86 (2015) 154-161.
[34] F. Mutelet, A. Revelli, J. Jaubert, L.M. Sprunger, W.E. Acree, G. A. Baker, J. Eng. Data 55 (2010) 234-242.
[35] M. Wagner, O. Stanga, W. Scroer. Phys. Chem. Chem. Phys. 6 (2004) 4421-4431.