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Abstract—This paper presents a generalization kernel for gravi-
tational potential determination by harmonic splines. It was shown
in [10] that the gravitational potential can be approximated using a
kernel represented as a Newton integral over the real Earth body. On
the other side, the theory of geopotential approximation by harmonic
splines uses spherically oriented kernels. The purpose of this paper
is to show that in the spherical case both kernels have the same type
of representation, which leads us to conclusion that it is possible
to consider the kernel represented as a Newton integral over the real
Earth body as a kind of generalization of spherically harmonic kernels
to real geometries.
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Regular Surface

I. INTRODUCTION

The actual problem of gravitational theory is the determi-

nation of a harmonic function (regular at infinity), to certain
linear functionals, for example, discrete boundary data on
the Earth’s surface or discrete satellite data from space. In
consequence, gravitational field theory canonically leads to
interpolation based on a specific linear functionals, usually
functional values or derivatives in certain (discretely given)
points. In the conventional geodetic approach due to [7], [11], it
was proposed, that the class of approximating functions should
conveniently be structured as a Hilbert space with reproducing
kernel. Interpolation of the Earth’s gravitational potential field
in terms of reproducing kernels immediately leads to a spline
formulation.
Considering spherical approximations to the shape of the
Earth, this can be seen by the well-known theory of spherical
harmonic splines. There is an extensive list of publications in
geomathematics considering this spherical approach. Numer-
ous applications from theory of spherical harmonic splines has
been used with very good results. Interested reader is referred
to the list of publications of the AG Geomathematik at the TU
Kaiserslautern. On the other hand, following the work of [11]
it was shown in [10] that it is also possible to develop the real
Earth body methods for geopotential determination by using
a reproducing kernel expressed as a Newton integral over the
real body of the Earth. Here it will be shown that this kernel
represents a generalization to spherically oriented kernels to
real geometries.

II. SPHERICAL HARMONIC SPLINES
Mathematical methods for approximation of gravitational
potential, like spherical harmonic splines have in their foun-
dation the Runge approach, which means that they are consid-
ering the Runge (or Bjerhammar sphere), which is completely
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situated in the Earth’s interior. Next we introduce the geomet-
rical concepts behind this theory.

yvext

Fig. 1. The geometric concept of a regular surface

Definition 1: A surface ¥ C IR? is called a C®)-regular

surface, if it satisfies the following properties:

(i) X divides IR? into the bounded region X" (inner space)
and unbounded region X¢** (outer space) defined by
yert = R3\ Rint, yint = yint Yy,

(ii) X is a closed and compact surface free of double points.

(iii) The origin O is contained in X",

(iv) ¥ is locally a C®)-surface (i.e., every point z € ¥
has an open neighborhood &/ C IR? such that ¥ N/
has a parametrization which is k-times continuously
differentiable).

Given a regular surface, there exist a positive constants «, 3,

such that

a < o™ = inf |z| < sup|z| = o*P < B. (1)
€Y zER

By A™t, B (resp. A°*t, B¢*') we denote the inner (resp.
outer) space of the sphere A resp. B around the origin with
radius o resp. 3. A is a so—called 'Runge sphere’ for 2,

The theory of spherical harmonic interpolation is well—
known (see [1],[2],[4],[5],[8],[9]). However, we need to
present in short some basic elements of this theory.

In the following we denote by X the real Earth surface, and
by 3t and X¢®* its interior and exterior respectively.

We first define a class of potentials, namely Pot(X¢*!) as
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the space of all functions U in C'(®)(X!) satisfying the
Laplace equation in the outer spaé&’ and being regular at
infinity (that is, |U(z)| = O(|z|71), [VU(z)| = O(|z|72) for
|z| — oo uniformly with respect to all directions & = T
For k = 0,1,... we denote by Pot*)(Zezt) the space of
all functions U € C*)(Xeet) such that Uly,,, is of class
Pot(X.¢). In shorthand notation,

ext

Pot®) (Teat) = por(xeet) N 0¥ (Teat), )

Let U be of class Pot”(Xe#%). Then the maxi-
mum/minimum principle for the outer space X¢** gives

sup |U(z)| < sup |U(2)]. ()
rexeat rEX

We next introduce the most commonly used harmonic
functions for representing scalar functions on a spherical sur-
face, namely the spherical harmonics. They form a complete
orthonormal system in the Hilbert space L2(£2), (© denotes
a unit sphere) and thus can be used for the construction
of Fourier series in L?(£2). Spherical harmonics of different
degrees are orthogonal in the sense of the L?({2)- inner product

(Yo, Vi) 22 = /Q Yo(©)Yim(€)dw(€) =0, n+m. @

For the Laplace operator A in IR3 we have the representa-
tion

2
2 1
()2l e
or r

where A* is the Beltrami operator on the unit sphere €.
For explicit representations in polar coordinates see [6].
Any spherical harmonic Y,,,n € Ny, is an infinitely often
differentiable eigenfunction of the Beltrami operator, corre-
sponding to the eigenvalue —n(n + 1),n € INg. A special
class of functions, in close connection to spherical harmonics,
are the Legendre polynomials. They can be defined via the
Legendre operator

Ly = (d/dt)(1 - *)(d/dt),

which is the ’longitude-independent part’ of the Beltrami
operator. The Legendre polynomial
P, : [-1,41] — R of degree n is the (uniquely defined)
infinitely often differentiable eigenfunction of the Legendre
operator L., corresponding to the eigenvalue —n(n + 1). It
is well-known that the Legendre polynomials are orthogonal
with respect to the L?([—1, +1])—inner product, i.e.,

)Pty = — 2

75n my 6
_1 2n+1 ©)

where 6,,, is the Kronecker symbol. The system
{P, }nen, of all Legendre polynomials is closed and complete
in L*([~1, +1]), with respect to

L2[—1,41]"
Fort € [-1,1] and all h € (—1,1)
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— 1
P,(t)h" = —————r. 7
nz:;) © V1+h?—2ht @

Also, for 0 < h < 1 and ¢t € [—1,1] the following series
representation can be derived from (7)

> 1—h?
2+ 1)y (t)h" = .
2 (@2n+ DPOR" = s

n=0
The following theorem, known as the addition theorem
for spherical harmonics, relates functions on the unit sphere
(spherical harmonics) of degree n to the univariate functions
defined on the interval [—1, +1] (Legendre polynomials).
Theorem 2: (Addition Theorem for Spherical Harmonics)
Let {Y,, % }k=1,.. 2n+1 be an orthonormal system of spherical
harmonics with respect to (-, -)2(q) in Harm,,(£2). Then

@®)

any 241

> Vo k(©)Yar(n) = i
k=1

Pn(gn)v 57776 Q. (9)

Next we consider a sphere 2z C IR? around the origin with
radius R > 0. Denote by Q" and Q%' the inner and the
outer space of {1y, respectively. By virtue of the isomorphism
Q> ¢&— RE € Qg we can assume functions F': 2 — IR to
be defined on Q. With the surface measure dwpr of Qg,

dwp = R?*dw, (10)

we are able to introduce the L?(Qz) - inner product
('7')L2(QR) and the associated norm || . HL2(QR), as usual.
Obviously, an L%(Q) - orthonormal system of spherical har-
monics forms an orthogonal system on (2p (with respect to
() L2 (Qn))-

The function spaces defined on €2 have their natural gener-
alizations as spaces of functions defined on 2z. We have for

example, C(Qg), LP(Q2R), etc.

The system of spherical harmonics {Y,% },—01,.. , where
T k=1,...,2n+1
Y@ = Y (). weQn an
n, R ) |.Z"

is orthonormal in L?(Qr)-sense.
of outer harmonics of

FR

n+1
H(jnfl,k(x) = (f;) Ynak(x)v HS IR3 \ {0}7 (12)

(where Y7, is system of spherical harmonics for the Runge
sphere), satisfies the following properties:
o H2, _,, is of class C9)/(IR®\ {0}),
o« AH?, ,,(2)=0, z¢€ R3\ {0},
. an_l_’k is regular at infinity, i.e.,
e, @) =0(F) . -,

x
Vi, @) =0(F) . -,
° an—1,k|A = waflw

. (e H

@ =00
—p— . Ck,q-
p—1,q L2(A) n,p “k,q
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A. The Hilbert Spaces H ({A,L}; Aext)

In the following we introduce the (Sobolev-like) Hilbert
spaces H({A}; A°**) of harmonic functions which serve
as reference spaces for spherically harmonic spline theory.
As already mentioned, from the mathematical point of view,
functions in #H ({4, }; A®*!) can be seen as series expansions
in terms of outer harmonics with certain assumptions on
the growth of the coefficients. Let A = {{A4, }nem,|4n €
IR* for all n € Ny} denote the set of all sequences of positive
real numbers. Given a sequence {A, }ren, € A, we consider
the linear space & = £({A,}; Aezt), € C Pot(>) (Aeat) of all
potentials F' of the form

oo 2n+1

F = Z Z F/\(nvj)H(jn—l,j

n=0 j=1

13)
whose Fourier coefficients (with respect to L?(A))

FNn, j) = /AF(ac)Hf‘nfljjdwa(ac) (14)

satisfy

oo 2n+1

o> ANFN(n )

n=0 j=1

15)

1/2
) (16)

Definition 3: The Sobolev space H ({A,L};Aewt> is de-
fined by

The last sum is imposed as a norm for £
oo 2n+1

1Ellgy(pa,yi700) = (Z > AN

n=0 j=1

— ==l —
H({A,}; A1) = E({A,}; Aewt)  HH{AnA=h

17
It is a Hilbert space equipped with the inner product
oo 2n+1
(F.pyqanyaem = O 2 ARF N (n,5)G"N(n, ) (18)
n=0 j=1

for F,G € H({A,}; Ae*t), where F/\(n,j) and G"(n, j)
are Fourier coefficients of F and G with respect to L?(A).
Every element F' of the space H({A,}; A°*') is uniquely
determined by its Fourier coefficients F'"(n, ) that satisfy

oo 2n+1

FIE sy, = (D0 D AZ(F (n,1))%) < o0, (19)

n=0 j=1
and F' can be formally represented by the expansion

oo 2n+1

F= Z Z F/\(naj)Hr—Xn—l,ja

n=0 j=1

(20)

which has to be understood in ‘distributional sense’ (at
least on A). Condition (19) determines the maximal possible
growth behavior of the Fourier coefficients. It follows
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directly from the definition of #H({A,}; A®*!) that the set
{AE1H3n71,k}neﬂ\IO,kzl,...an is a complete orthonormal
system in H({A,}; Ae=t).

Remark: In particular, we let

Hs (At = H({(n+1/2)°}; Aest) s € R. (21)
Especially for s = 0 we have
Ho(Aewt) = H({1}; Aert). (22)

The space Ho(A®**) may be understood as the space
of all harmonic functions in A¢*t regular at infinity,
corresponding to L?(A)-restrictions. Its norm [| - ||, e

can be understood as the L2(A)-norm. Loosely spoken,
the topology of Ho(A¢*!) is led back to the topology of
L?(A) = Ho(Ae*t)|4 and Ho(Ae*') forms the harmonic
continuations of L?(A)-functions.

According to our construction, the space Pot™ (A¢*t) is a
dense subspace of H,(Ac*t) for each s. Moreover, if ¢ < s,
then || F||;,, zewr) < |1F |y caemr-

When we associate to a potential F' € Pot™(Ae*t) the
series (20), it is of fundamental importance to know if the
series converges uniformly on A¢®t. The answer is provided
by an analogue of the Sobolev lemma. In order to present
this lemma, we first introduce the concept of summable
sequences.

Definition 4: A sequence {A,}pen, € A is called
summable if it satisfies the summability condition

Cdn A2

n=0

(23)

Lemma 5: (Sobolev Lemma) If a sequence {4, }nen, € A
is summable, then each F' € H({A,}; A°**) corresponds to a
potential of class Pot(?)(Ae=),

Theorem 6: Let {A,}nhen, € A be a summable sequence.
Then H({A,};A*?) is a reproducing kernel Hilbert space
with the reproducing kernel given by

Koyganyiae (@)

oo 2n-+1 1 1
= Z Z Tann—l,j(x)A HY, 1](?/)
n=0 j=1
+1
=1 2n+1( o? " Ty
S I
= A7 Ama? \ Jxfly] |yl

(24)

where x,y € Aext.

B. H({Ay}; Ae=t)-Splines

The Sobolev spaces of harmonic functions H({A,,}; A¢*t)
allow the definition of harmonic splines (see [1],[3] for the
original papers or the text books [4], [6]). These splines are
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introduced with respect to a set of linear bounded functionals
which provide interpolation conditions. The choise of the so-
lution space H({A,}; A°*?), i.e., the corresponding sequence
{A,}new, € A, is dictated by the specifics of the functional
under consideration.

Definition 7: Let {L1,...Ln} be a set of N linearly in-
dependent bounded linear functionals on the Sobolev-type
Hilbert space H({ A, }; A¢**). Then any function S of the form

N
= D WLl a0 (@)@ € AT
=1

(25)

with a set of real numbers {ai,...,an} C IR is called a
H({A,}; Ae=t)-spline relative to {L4,...Lxn}.

The function space of all H({A,}; A¢*!)-splines relative
to {L1,...Lx} is denoted by Sy, (4 3 e (L1, L)

H({A,}; Ae*t)-spline interpolation problem

Let F' € H({A,}; A=), and let {Ly,..LNn} be a set
of N linearly independent bounded linear functionals
on the Hilbert space H({A,};A®*). As usual we
denote the representer of L;, by EiKH({ A"};W)('v')’
i = ., N. Denoting the space of all interpolating
functions in H({A,}; A¢*!) for F relative to Lq,...,Ly by
Tr,...cn- the H({A}; Ae®t)—spline interpolation problem
is to determine a function S¥ (L£4,..Ln) in

H({An}iATT) ,
Syciapyaeny (L1 L) 0 Lg, ry, ie., to determine
a spline SF . }Am)(ﬁb..LN) which fulfills the

interpolation conditions

LSt

H{ ALY Ae.Lt)(‘C].7

L) = LiF,

foralli=1,...,N.

The solution to the interpolation problem corresponding
to H({A,}; Ae*t)-splines relative to a finite set of linear
bounded functionals, relates the interpolation conditions to
a system of linear equations which needs to be solved to
obtain the spline coefficients. Together with the set of linear
bounded functionals and the Sobolev space H({A,}; Ac*?)
(or the corresponding representers) these coefficients define
the interpolating spline. For this spline the minimum norm
properties are valid.

III. THE REPRODUCING KERNEL VIA THE NEWTON
POTENTIAL

Spherical and ellipsoidal models are widely used in geo-
sciences as approximations to the shape of the Earth. However,
the technological progress and the increasing observational
accuracy require adequate mathematical methods observing
geophysically more realistic reference surfaces than sphere and
ellipsoid. This was the idea behind our approach. Following
the work of [11] we proposed that it is reasonable to use a
reproducing kernel given as a Newton integral over the real
Earth body:
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zEXer, (26)

dz

K(z,y) /Et prps T £

Using this kernel, a real Earth based spline formulation for

the solution of interpolation problem of geopotential determi-

nation is given in [10]. However, investigations on this kernel

in spherical case showed a remarkable result. Replacing a

regular surface 3 with the Runge sphere A = €, this kernel

takes the form of the reproducing kernel of type (24). Indeed,
the kernel gets the following representation

dz
Ky = [ —
@) /A T2l 7

Now using the known expansions in spherical harmonics for
fundamental solutions (of the Laplace’s equation) appearing in
the integral we can write

27

z
— . 28
TEE Z |x|n+1 r(fm)
and
y oz
T P (29)
Iy—Z\ Z \yl"’+1 (Iyl IZ>
Substituting this expressions in (27) we get
1 1
K(z,y) :/ ———dz
aint | — 2| |y — 2|
W RNELACE)
0, 2= |x|"+1 ERE
y oz z
- | dw, ()dr
Z Iylm+1 (Iy Z|> 2|
(30)

Using the addition theorem for spherical harmonics the last
expression can be written as

a 2n+2 4
|, X e () G )
0 (|$||y|)' 2n+1 |yl
1 «
_Z 7L+1PrL<I'y>/ T2n/+2d’l"
2n+1 (lllyl) Izl lyl/ Jo

( T y ) a2n+3
P,
\90||y|)7”r1 e Tyl ) 2n +3

( a2 >”“P (fv y)
2n+1 2n+3) |||y “\lz| |yl

Altogether we have

1 2n+1 o? n+1P x
« A2 dma® \ ||yl BANED

where A, = 47(2n + 1)(2n + 3)/2a73/2,

Z
O
Z
- 31)

y) (32)
|y

[e°]

K(z,y) =
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This means that in case of ¥ = A, the kernel (26)
corresponds to the type of kernels defined by H ({An}; Ae“),
where A,, is the summable sequence

A, = 4m(2n +1)(2n + 3)/2a7%/2, (33)

Following figures represent the reproducing kernel (32),
calculated for x,y € 2 and different values of « using the
Clenshaw algorithm.

Fig. 2. Kernel K on 2 with oo = 0.7.
2 a
18| / \
1.4 /// \
'2 / / \\ ]
LK /// \‘.\“-- 4
Fig. 3. Kernel KC on 2 with oo = 0.9.

Fig. 4. Kernel K on 2 with o = 0.99.

IV. NUMERICAL RESULTS

For some special classes of summable sequences {4, } e,
we can find closed representations of the reproducing kernel
as an elementary function by the use of the addition theorem
(9) as well as (7) or (8), respectively. Taking the advantage of
closed representations, numerical computations using spherical

International Scholarly and Scientific Research & Innovation 6(8) 2012

(] 5 10 15 20 25 a0 35 40

Fig. 5. Coefficients AL of K with o = 0.7.

] 5 10 15 20 25 an 35 40

Fig. 6. Coefficients A5, of K with v = 0.9.

kernels is mainly done by using type of kernels like Abel-
Poisson or the singularity of kernel.

(i) Kernels of Abel-Poisson type: A, = h~"/2 for h €
(0,1)

)(ff»y)

H({h—n/Z};Aczt

+1
> n2n+1 a? " T oy
=2 " ) P\
ot T z||y z| |y
1 |lz[*[y|* — h?a*

T A (|x|2\y|2 + h2a4 — 2h042(x . y))3/2

(34)

with x,y € Aext,
(ii) Kernels of Singularity type: A, = (n + 3)h™"/2 for
he€(0,1)

(n+%)h*”/2};ﬁ) (I7 y)

K
#(
e} n+1
h" 2n+1 a? z vy
= Z N Pl = .2
= (n+3) dma® \ Jzlly| =] [yl
1 1
™ (J2l2ly|? + h2at — 2ha?(z - y))

12

with x,y € Aevt,

Considering the particular sequence (45) we are interested
in the existence of a closed expression for the kernel . We
have
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Fig. 7. Coefficients Ay, of K with ov = 0.99. : [
Fig. 9. Singularity Kernel on 2 with h = 0.9

F(h,t) includes an elliptic integral of I kind.
In conclusion we have for the sum S

I >

| BT 1
Sy = L _P.(t) = —F(Vhi,t). 39
i | | ;02”“ (t) N (Vhi,t) (39)

In a similar way we calculate the sum Ss. Equation (7)

yields for ¢ = ﬁ . ﬁ and for the sum

Fig. 8. Kernel of Abel-Poisson type on €2 with A = 0.9 i BB (1) = 2 i(hQ)”Pn(t) _ h? .
o o V14 ht —2th?
(40)
Again integrating both sides with respect to h, we get
4o a?n 1 z Yy
@)= Ll 2 Tl Gas w3\ T N .
35 s—bn(t) = / T
Writing by = 2% = (—2—) = h?, and using pafrtiai =0t ' 1+ h% —2th?
oo [Tyl Nzl ’ . pon (41)
raction we get B3 h.t) — (b t
Z In+3 n g( ) ) g( 1, )7
(2,y) = drad Z p2n 1 P, ( x y> where G(h,t) is defined via elliptic integrals of I and II
lzllyl &=~ (2n+1)(2n +3) |yl kind respectively.
B 2rad i W 1 b ( r ) In conclusion we have for the sum Ss
allyl 2= " 2n 1" "\Ja| "Ty] = i
Sy = ——P,(t) = ot 42
=5, ? ;2n+3 3/2 h,t) (42)
2ma® o 1 ( Y > . .
_ hn pl=.2). Finally for the reproducing kernel (32) we have
||yl 2 AN I
=S, 1 1
K(z,y) = ——d
(36) (@,9) /A,,-,m |z — 2| ly — 2| ?
For the sum S; we get from (7) for t = % - & 2ra’ 1 1
1 We g @ ol T =20 L (i t) G 1)
|||y \ VA 3/
1
hi P, (t) PPy (t) = ——— . (37
Z (t) nZO< V' Pult) = = OD w
Integrating both sides with respect to h, we get For elliptic integrals of I and II kind is known that there
exist closed expression only in the case ¢t = —1 or t = 1.

p2n+1 For other values of t, namely for which we are interested, the

—— P, (t) = | ———=dh = F(h,t), (38) j i i

Z o+ 1 (1) / T hl oz (h,t), (38) integral must l?e calculat.ed numerically. This means th:':lt the
n=0 closed expression for this kernel does not exist even in the

where case of spherical boundary.
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V. CONCLUSION

The result from the previous section shows us that when
going over from the sphere to the regular surface ¥ we can
consider the kernel

K(z,y) = / L, T € Yert, (44)
sine |7 — 2|y — 2]

a generalization to spherically oriented kernels. Moreover,
the spherical representation of this kernel

K(z,y)

,i dma?n P <w y)
2 2n+ 1)(2n + 3)(Jzlly)* "\l [yl

associated with the summable sequence

A, = 4m(2n+1)(2n + 3)1/2a73/2, (45)

corresponds to the spherically oriented kernels described in
Section 1.

This is of significant result especially today when due to
the technological advances spherical models are no longer
satisfactory. Modern sciences that contribute to the study of the
Earth processes are more and more interested in boundaries
such as the real Earth surface or the real Earth body. Our result
from the previous section opens the door for future investiga-
tions in approximations involving non-spherical boundaries.
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