Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution
Authors: H. C. O. Reis, A. S. Cossolin, B. A. P. Santos, K. C. Castro, G. M. Pereira, V. C. Silva, P. T. Sousa Jr, E. L. Dall’Oglio, L. G. Vasconcelos, E. B. Morais
Abstract:
In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 °C). According to Dubinin–Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.
Keywords: Color removal, kinetic and isotherm studies, thermodynamic parameters, FTIR.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340591
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977References:
[1] K. Kumar, G. K. Singh, M. G. Dastidar, T. R. Sreekrishnan, Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater. Water Resour. Ind. 2014, 5: 1–8.
[2] D. R. Manenti, P. A. Soares, A. N. Módenes, F. R. Espinoza-Quiñones, R. A. R. Boaventura, R. Bergamasco, V. J. P. Vilar, Insights into solar photo-Fenton process using iron(III)–organic ligand complexes applied to real textile wastewater treatment. Chem. Eng. J. 2015, 266: 203–212.
[3] L. C. Juang, C. K. Lee, C. C. Wang, S. H. Hung, M. D. Lyu, Adsorptive removal of Acid Red 1 from aqueous solution with surfactant modified titanate nanotubes. Environ. Eng. Sci. 2008, 25: 519–528.
[4] H. Zhang, Y. Tang, X. Liu, Z. Ke, X. Su, D. Cai, X. Wang, Y. Liu, Q. Huang, Z. Yu, Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of Malachite green from aqueous solutions. Desalination, 2011, 274: 97–104.
[5] R. Nilsson, R. Nordlinder, U. Wass, B. Meding, L. Belin, Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br. J. Ind. Med. 1993, 50: 65–70.
[6] I. M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dye-containing effluents: a review. Bioresour. Technol. 1997, 58: 217–227.
[7] J. M. Aquino, G. F. Pereira, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, Combined Coagulation and Electrochemical Process to Treat and Detoxify a Real Textile Effluent. Water. Air. Soil Pollut. 2016, 227: 1–12.
[8] S. He, W. Sun, J. Wang, L. Chen, Y. Zhang, J. Yu, Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation, Radiat. Phys. Chem. 2016, 124: 203–207.
[9] E. Hu, S. Shang, X. Tao, S. Jiang, K. Chiu, Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J. Clean. Prod. 2016, 137: 1055–1065.
[10] J. Lin, W. Ye, M. Baltaru, Y. Pan, N.J. Bernstein, P. Gao, S. Balta, M. Vlad, A. Volodin, A. Sotto, P. Luis, A.L. Zydney, B. Van Der Bruggen, Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J. Memb. Sci. 2016, 514: 217–228.
[11] Y. Han, H. Li, M. Liu, Y. Sang, C. Liang, J. Chen, Purification treatment of dyes wastewater with a novel micro-electrolysis reactor. Sep. Purif. Technol. 2016, 170: 241–247.
[12] F. Deniz, R. Aysun, Dye biosorption onto pistachio by-product: A green environmental engineering approach. J. Mol. Liq. 2016, 219: 194–200.
[13] D. Karadag, M. Turan, E. Akgul, S. Tok, A. Faki, Adsorption equilibrium and kinetics of Reactive Black 5 and Reactive Red 239 in aqueous solution onto surfactant-modified zeolite. J. Chem. Eng. Data. 2007, 52:1615–1620.
[14] L. D. Fiorentin, D. E. G. Trigueros, A. N. Módenes, F. R. Espinoza-Quiñones, N. C. Pereira, S. T. D. Barros, O. A. A. Santos, Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: Kinetic and equilibrium modeling. Chem. Eng. J. 2010, 163: 68–77.
[15] Y. Safa, H. Nawaz, Biosorption of Direct Red-31 and Direct Orange-26 dyes by rice husk : Application of factorial design analysis. Chem. Eng. Res. Des. 2011, 89: 2566–2574.
[16] K. C. Castro, A. S. Cossolin, H. C. O Reis, E. B. Morais, Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Braz. Arch. Biol. Technol. 2017, 60: 1–13.
[17] S. T. Akar, D. Yilmazer, S. Celik, Y. Y. Balk, T. Akar, Effective biodecolorization potential of surface modified lignocellulosic industrial waste biomass. Chem. Eng. J. 2015, 259: 286–292.
[18] M. K. Dahri, M. R. R. Kooh, L. B. L. Lim, Water remediation using low cost adsorbent walnut shell for removal of Malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. J. Environ. Chem. Eng. 2014, 2: 1434–1444.
[19] E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Sillanpää, A. Bhatnagar, A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae – Effect of pretreatment. Chem. Eng. J. 2017, 307: 435–446.
[20] Ö. Tunç, H. Tanaci, Z. Aksu, Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. J. Hazard. Mater. 2009, 163: 187–198.
[21] H. Fan, J. Yang, T. Gao, H. Yuan, Removal of a low-molecular basic dye (Azure Blue) from aqueous solutions by a native biomass of a newly isolated Cladosporium sp.: Kinetics, equilibrium and biosorption simulation. J. Taiwan Inst. Chem. Eng. 2012, 43: 386–392.
[22] G. Crini, H. N. Peindy, F. Gimbert, C. Robert, Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 2007, 53: 97–110.
[23] P. Geetha, M. S. Latha, M. Koshy, Biosorption of Malachite green dye from aqueous solution by calcium alginate nanoparticles: Equilibrium study. J. Mol. Liq. 2015, 212: 723–730.
[24] S. Srivastava, R. Sinha, D. Roy, Toxicological effects of Malachite green. Aquat. Toxicol. 2004, 66: 319–329.
[25] A Panandiker, C. Fernandes, T. K. Rao, K. V Rao, Morphological transformation of Syrian hamster embryo cells in primary culture by malachite green correlates well with the evidence for formation of reactive free radicals. Cancer Lett. 1993, 74: 31–36.
[26] T. Zahn, T. Braunbeck, Cytotoxic effects of sublethal concentrations of malachite green in isolated hepatocytes from rainbow trout (Oncorhynchus mykiss). Toxicol. In Vitro. 1995, 9: 729–741.
[27] S. J. Culp, P. W. Mellick, R. W. Trotter, K. J. Greenlees, R. L. Kodell, F. A. Beland, Carcinogenicity of Malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol. 2006, 44: 1204–1212.
[28] T. Akar, İ. Tosun, Z. Kaynak, E. Kavas, G. Incirkus, S.T. Akar, Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. J. Hazard. Mater. 2009, 171: 865–871.
[29] A. R. Khataee, F. Vafaei, M. Jannatkhah, Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int. Biodeterior. Biodegrad. 2013, 83: 33–40.
[30] S. W. Won, H. J. Kim, S. H. Choi, B. W. Chung, K. J. Kim, Y. S. Yun, Performance, kinetics and equilibrium in biosorption of anionic dye Reactive Black 5 by the waste biomass of Corynebacterium glutamicum as a low-cost biosorbent. Chem. Eng. J. 2006, 121: 37–43.
[31] P. Saha, S. Chowdhury, S. Gupta, I. Kumar, Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem. Eng. J. 2010, 165: 874–882.
[32] W. T. Tsai, H. C. Hsu, T. Y. Su, K. Y. Lin, C. M. Lin, Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste. J. Hazard. Mater. 2008, 154: 73–78.
[33] P. Kaushik, A. Malik, Fungal dye decolourization: recent advances and future potential. Environ. Int. 2009, 35: 127–141.
[34] M.S. Uddin, J. Zhou, Y. Qu, J. Guo, P. Wang, L.H. Zhao, Biodecolorization of azo dye acid red B under high salinity condition., Bull. Environ. Contam. Toxicol. 79 (2007) 440–4.
[35] S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination. 2011, 265: 159–168.
[36] S. Y. Kim, M. R. Jin, C. H. Chung, Y. S. Yun, K. Y. Jahng, K. Y. Yu, Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. J. Biosci. Bioeng. 2015, 119: 433–439.
[37] S. Lagergren S, Zur theorie der sogenannten adsorption gelster stoffe. K Sven Vetenskapsakad Handl. 1898, 24: 1-39.
[38] Y. S. Ho, G. Mckay. Kinetic models for the sorption of dye from aqueous solution by wood. Trans Chem Eng. 1998, 76 (2): 183-191.
[39] M. J. Weber, J. C. Morris. Kinetic of adsorption on carbon from solution. J Sanit Eng. Div ASCE. 1963, 89: 31-60.
[40] A. Witek-Krowiak. Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust. Chem Eng J. 2011, 171(3): 976–985.
[41] F. Zhang, B. Ma, X. Jiang, Y. Ji, Dual function magnetic hydroxyapatite nanopowder for removal of malachite green and Congo red from aqueous solution. Powder Technol. 2016, 302: 207–214.
[42] I. Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918, 40(9): 1361-1403.
[43] H. Freundlich. Over the adsorption in the solution. J Phys Chem. 1906, 57: 385-470.
[44] M. M. Dubinin, L. V. Radushkevich. Equation of the characteristic curve of activated charcoal, Proc Acad Sci. USSR. 1947, 55: 331–333.
[45] Z. Bekçi, Y. Seki, L. Cavas, Removal of Malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. J. Hazard. Mater. 2009, 161: 1454–1460.
[46] B. Kumar, U. Kumar, Adsorption of malachite green in aqueous solution onto sodium carbonate treated rice husk. Korean J. Chem. Eng. 2015, 32: 1655–1666.
[47] E. K. Guechi, O. Hamdaoui, Sorption of Malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method. Arab. J. Chem. 2011, 9: S416–S424.
[48] F. Deniz, R.A. Kepekci, Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent. Microchem. J. 2017, 132: 172–178.
[49] S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder, Colloids and Surfaces B: Biointerfaces. 2011, 84: 520-527.
[50] G. H. Sonawane, V. S. Shrivastava, Kinetics of decolourization of malachite green from aqueous medium by maize cob (Zea maize): An agricultural solid waste, Desalination. 2009, 247: 430–441.
[51] K. V. Kumar, S. Sivanesan, V. Ramamurthi, Adsorption of Malachite green onto Pithophora sp., a fresh water algae : Equilibrium and kinetic modeling. Process. Biochem. 2005, 40: 2865–2872.
[52] Y. Tang, Y. Zeng, T. Hu, Q. Zhou, Y. Peng, Preparation of lignin sulfonate-based mesoporous materials for adsorbing Malachite green from aqueous solution. J. Environ. Chem. Eng. 2016, 4: 2900–2910.
[53] M. K. Dahri, M. R. R. Kooh, L. B. L. Lim, Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Eng. J. 2015, 54: 1253–1263.
[54] R. Ahmad, R. Kumar, Adsorption studies of hazardous Malachite green onto treated ginger waste. J. Environ. Manage. 2010, 91: 1032–1038.
[55] K. B. Fontana, E. S. Chaves, J. D. S. Sanchez, E. R. L. R. Watanabe, J. M. T. A Pietrobelli, G. G. Lenzi. Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf. 2016, 124: 329–336.
[56] G. Markou, D. Mitrogiannis, K. Muylaert, A. Çelekli, H. Bozkurt. Biosorption and retention of orthophosphate onto Ca(OH)2-pretreated biomass of Phragmites sp. J Environ Sci. 2015, 45: 49–59.
[57] Q. Li, L. Chai, Z. Yang, Q. Wang. Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions. Appl Surf Sci. 2009, 255(7): 4298–4303.
[58] T. Akar, I. Tosun, Z. Kaynak, E. Ozkara, O. Yeni, E. N. Sahin, S. T. Akar, An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace. J Hazard Mater. 2009, 166: 1217–1225.
[59] A. I. Ferraz, C. Amorim, T. Tavares, J. A. Teixeira. Chromium (III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies. Int J Environ Sci Technol. 2015, 12: 1591–1602.