Search results for: Mach Zehnder Bias Voltage
940 A Novel Zero Voltage Transition Synchronous Buck Converter for Portable Application
Authors: S. Pattnaik, A. K. Panda, Aroul K., K. K. Mahapatra
Abstract:
This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which is designed to operate at low output voltage and high efficiency typically required for portable systems. To make the DC-DC converter efficient at lower voltage, synchronous converter is an obvious choice because of lower conduction loss in the diode. The high-side MOSFET is dominated by the switching losses and it is eliminated by the soft switching technique. Additionally, the resonant auxiliary circuit designed is also devoid of the switching losses. The suggested procedure ensures an efficient converter. Theoretical analysis, computer simulation, and experimental results are presented to explain the proposed schemes.
Keywords: DC-DC Converter, Switching loss, Synchronous Buck, Soft switching, ZVT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151939 Selective Harmonic Elimination of PWM AC/AC Voltage Controller Using Hybrid RGA-PS Approach
Authors: A. K. Al-Othman, Nabil A. Ahmed, A. M. Al-Kandari, H. K. Ebraheem
Abstract:
Selective harmonic elimination-pulse width modulation techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. Traditional optimization methods suffer from various drawbacks, such as prolonged and tedious computational steps and convergence to local optima; thus, the more the number of harmonics to be eliminated, the larger the computational complexity and time. This paper presents a novel method for output voltage harmonic elimination and voltage control of PWM AC/AC voltage converters using the principle of hybrid Real-Coded Genetic Algorithm-Pattern Search (RGA-PS) method. RGA is the primary optimizer exploiting its global search capabilities, PS is then employed to fine tune the best solution provided by RGA in each evolution. The proposed method enables linear control of the fundamental component of the output voltage and complete elimination of its harmonic contents up to a specified order. Theoretical studies have been carried out to show the effectiveness and robustness of the proposed method of selective harmonic elimination. Theoretical results are validated through simulation studies using PSIM software package.Keywords: PWM, AC/AC voltage converters, selectiveharmonic elimination, direct search method, pattern search method, Real-coded Genetic algorithms, evolutionary algorithms andoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318938 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.
Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814937 The Design of PFM Mode DC-DC Converter with DT-CMOS Switch
Authors: Jae-Chang Kwak, Yong-Seo Koo
Abstract:
The high efficiency power management IC (PMIC) with switching device is presented in this paper. PMIC is controlled with PFM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS (DT-CMOS) with low on-resistance is designed to decrease conduction loss. The threshold voltage of DT-CMOS drops as the gate voltage increase, resulting in a much higher current handling capability than standard MOSFET. PFM control circuits consist of a generator, AND gate and comparator. The generator is made to have 1.2MHz oscillation voltage. The DC-DC converter based on PFM control circuit and low on-resistance switching device is presented in this paper.
Keywords: DT-CMOS, PMIC, PFM, DC-DC converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203936 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.
Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347935 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier
Authors: Maninder Kaur Gill, Alpana Agarwal
Abstract:
It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.Keywords: Device under test, open-loop voltage gain, operational amplifier, test circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334934 Application of Voltage Stability Indices for Proper Placement of STATCOM under Load Increase Scenario
Authors: A. S. Telang, P. P. Bedekar
Abstract:
In today’s world, electrical energy has become an indispensable component of all aspects of modern human life. Reliability, security and stability are the key aspects of any power system. Failure to meet any of these three aspects results into a great impediment to modern life. Modern power systems are being subjected to heavily stressed conditions leading to voltage stability problems. If the voltage stability problems are not mitigated properly through proper voltage stability assessment methods, cascading events may occur which may lead to voltage collapse or blackout events. Modern FACTS devices like STATCOM are one of the measures to overcome the blackout problems. As these devices are very costly, they must be installed properly at suitable locations, mostly at weak bus. Line voltage stability indices such as FVSI, Lmn and LQP play important role for identification of a weak bus. This paper presents evaluation of these line stability indices for the assessment of reliable information about the closeness of the power system to voltage collapse. PSAT is a user-friendly MATLAB toolbox, of which CPF is an important feature which has been extensively used for the placement of STATCOM to assess the stability. Novelty of the present research work lies in that the active and reactive load has been changed simultaneously at all the load buses under consideration. MATLAB code has been developed for the same and tested successfully on various standard IEEE test systems. The results for standard IEEE14 bus test system, specifically, are presented in this paper.
Keywords: Voltage stability analysis, voltage collapse, PSAT, CPF, VSI, FVSI, Lmn, LQP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783933 An On-chip LDO Voltage Regulator with Improved Current Buffer Compensation
Authors: Lv Xiaopeng, Bian Qiang, Yue Suge
Abstract:
A fully on-chip low drop-out (LDO) voltage regulator with 100pF output load capacitor is presented. A novel frequency compensation scheme using current buffer is adopted to realize single dominant pole within the unit gain frequency of the regulation loop, the phase margin (PM) is at least 50 degree under the full range of the load current, and the power supply rejection (PSR) character is improved compared with conventional Miller compensation. Besides, the differentiator provides a high speed path during the load current transient. Implemented in 0.18μm CMOS technology, the LDO voltage regulator provides 100mA load current with a stable 1.8V output voltage consuming 80μA quiescent current.
Keywords: capacitor-less LDO, frequency compensation, transient response, power supply rejection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4694932 Protection of Transformers against Surge Voltage
Authors: Anil S. Khopkar, Umesh N. Soni
Abstract:
Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection not provided. The surge arrestor is device which is connected in a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arrestors (MOSA) are connected across each terminal. The Basic Insulation Level (BIL) of transformers has been defined in the national and international standards based on its voltage rating. While designing transformer insulation, factors such as BIL, surge arrestor ratings, and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrestor ratings, their location, the margin considered in insulation design, the quantity of surge voltage strikes, etc. This paper demonstrates the role of surge arrestors in protecting transformers against overvoltage, transformer insulation design, the optimum location of surge arrestors and their connection lead length, insulation coordination for transformers, the protection margin in BIL, and methods of safeguarding transformers against surge voltages in detail.
Keywords: Surge voltage, surge arrestors, transformer, protection margin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78931 A Single Phase ZVT-ZCT Power Factor Correction Boost Converter
Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy
Abstract:
In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape.Keywords: Power factor correction, zero-voltage transition, zero-current transition, soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009930 Characteristics Analysis of Voltage Sag and Voltage Swell in Multi-Grounded Four-Wire Power Distribution Systems
Authors: Jamal Moshtagh, Hassan Pourvali Souraki
Abstract:
In North America, Most power distribution systems employ a four-wire multi-grounded neutral (MGN) design. This paper has explained the inherent characteristics of multi-grounded three-phase four-wire distribution systems under unbalanced situations. As a result, the mechanism of voltage swell and voltage sag in MGN feeders becomes difficult to understand. The simulation tool that has been used in this paper is MATLAB under Windows software. In this paper the equivalent model of a full-scale multigrounded distribution system implemented by MATLAB is introduced. The results are expected to help utility engineers to understand the impact of MGN on distribution system operations.Keywords: Distribution systems, multi- grounded, neutral, three-phase four-wire, ground.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141929 Highly Optimized Novel High Speed Low Power Barrel Shifter at 22nm Hi K Metal Gate Strained Si Technology Node
Authors: Shobha Sharma, Amita Dev
Abstract:
This research paper presents highly optimized barrel shifter at 22nm Hi K metal gate strained Si technology node. This barrel shifter is having a unique combination of static and dynamic body bias which gives lowest power delay product. This power delay product is compared with the same circuit at same technology node with static forward biasing at ‘supply/2’ and also with normal reverse substrate biasing and still found to be the lowest. The power delay product of this barrel sifter is .39362X10-17J and is lowered by approximately 78% to reference proposed barrel shifter at 32nm bulk CMOS technology. Power delay product of barrel shifter at 22nm Hi K Metal gate technology with normal reverse substrate bias is 2.97186933X10-17J and can be compared with this design’s PDP of .39362X10-17J. This design uses both static and dynamic substrate biasing and also has approximately 96% lower power delay product compared to only forward body biased at half of supply voltage. The NMOS model used are predictive technology models of Arizona state university and the simulations to be carried out using HSPICE simulator.Keywords: Dynamic body biasing, highly optimized barrel shifter, PDP, Static body biasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883928 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations
Authors: K. Noah, F.-S. Lien
Abstract:
In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.
Keywords: Compressible lattice Boltzmann metho-, large eddy simulation, turbulent jet flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954927 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory
Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock
Abstract:
Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.
Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830926 The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences
Authors: Maha Hammami, Olfa Benouda Sioud
Abstract:
This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences.
Keywords: Intentional bias, Management earnings forecasts, neutrality, verifiability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243925 On Two Control Approaches for The Output Voltage Regulation of a Boost Converter
Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb
Abstract:
This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.
Keywords: Boost DC-DC converter, Sliding Mode Control (SMC), Fuzzy Sliding Mode Control (FSMC), Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543924 Application of HSA and GA in Optimal Placement of FACTS Devices Considering Voltage Stability and Losses
Authors: A. Parizad, A. Khazali, M. Kalantar
Abstract:
Voltage collapse is instability of heavily loaded electric power systems that cause to declining voltages and blackout. Power systems are predicated to become more heavily loaded in the future decade as the demand for electric power rises while economic and environmental concerns limit the construction of new transmission and generation capacity. Heavily loaded power systems are closer to their stability limits and voltage collapse blackouts will occur if suitable monitoring and control measures are not taken. To control transmission lines, it can be used from FACTS devices. In this paper Harmony search algorithm (HSA) and Genetic Algorithm (GA) have applied to determine optimal location of FACTS devices in a power system to improve power system stability. Three types of FACTS devices (TCPAT, UPFS, and SVC) have been introduced. Bus under voltage has been solved by controlling reactive power of shunt compensator. Also a combined series-shunt compensators has been also used to control transmission power flow and bus voltage simultaneously. Different scenarios have been considered. First TCPAT, UPFS, and SVC are placed solely in transmission lines and indices have been calculated. Then two types of above controller try to improve parameters randomly. The last scenario tries to make better voltage stability index and losses by implementation of three types controller simultaneously. These scenarios are executed on typical 34-bus test system and yields efficiency in improvement of voltage profile and reduction of power losses; it also may permit an increase in power transfer capacity, maximum loading, and voltage stability margin.Keywords: FACTS Devices, Voltage Stability Index, optimal location, Heuristic methods, Harmony search, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011923 Using the Schunt Active Power Filter for Compensation of the Distorted and Umbalanced Power System Voltage
Authors: I. Habi, M. Bouguerra, D. Ouahdi, H. Meglouli
Abstract:
In this paper, we apply the PQ theory with shunt active power filter in an unbalanced and distorted power system voltage to compensate the perturbations generated by non linear load. The power factor is also improved in the current source. The PLL system is used to extract the fundamental component of the even sequence under conditions mentioned of the power system voltage.
Keywords: Converter, power filter, harmonies, non-linear load, pq theory, PLL, unbalanced voltages, distorted voltages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603922 Analysis of a PWM Boost Inverter for Solar Home Application
Authors: Rafia Akhter, Aminul Hoque
Abstract:
Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.
Keywords: Boost Inverter, inverter, duty cycle, PWM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4617921 Triple-input Single-output Voltage-mode Multifunction Filter Using Only Two Current Conveyors
Authors: Mehmet Sagbas, Kemal Fidanboylu, M. Can Bayram
Abstract:
A new voltage-mode triple-input single-output multifunction filter using only two current conveyors is presented. The proposed filter which possesses three inputs and single-output can generate all biquadratic filtering functions at the output terminal by selecting different input signal combinations. The validity of the proposed filter is verified through PSPICE simulations.Keywords: Active Filters, Voltage mode, Current conveyor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755920 Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate
Authors: A. M. Tahsini, S. Tadayon Mousavi
Abstract:
In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.Keywords: Impinging jet, Numerical simulation, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474919 A Study on Integrated Performance of Tap-Changing Transformer and SVC in Association with Power System Voltage Stability
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Electricity market activities and a growing demand for electricity have led to heavily stressed power systems. This requires operation of the networks closer to their stability limits. Power system operation is affected by stability related problems, leading to unpredictable system behavior. Voltage stability refers to the ability of a power system to sustain appropriate voltage levels through large and small disturbances. Steady-state voltage stability is concerned with limits on the existence of steady-state operating points for the network. FACTS devices can be utilized to increase the transmission capacity, the stability margin and dynamic behavior or serve to ensure improved power quality. Their main capabilities are reactive power compensation, voltage control and power flow control. Among the FACTS controllers, Static Var Compensator (SVC) provides fast acting dynamic reactive compensation for voltage support during contingency events. In this paper, voltage stability assessment with appropriate representations of tap-changer transformers and SVC is investigated. Integrating both of these devices is the main topic of this paper. Effect of the presence of tap-changing transformers on static VAR compensator controller parameters and ratings necessary to stabilize load voltages at certain values are highlighted. The interrelation between transformer off nominal tap ratios and the SVC controller gains and droop slopes and the SVC rating are found. P-V curves are constructed to calculate loadability margins.
Keywords: SVC, voltage stability, P-V curve, reactive power, tap changing transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022918 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device
Authors: Muhibul Haque Bhuyan
Abstract:
This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387917 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs
Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary
Abstract:
This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.
Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130916 An Investigation on Vegetable Oils as Potential Insulating Liquid
Authors: C. Kocatepe, E. Taslak, C. F. Kumru, O. Arıkan
Abstract:
While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.Keywords: Breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596915 Soil Resistivity Structure and Its Implication on the Pole Grid Resistance for Transmission Lines
Authors: M. Nassereddine, J. Rizk, G. Nasserddine
Abstract:
High Voltage (HV) transmission lines are widely spread around residential places. They take all forms of shapes: concrete, steel, and timber poles. Earth grid always form part of the HV transmission structure, whereat soil resistivity value is one of the main inputs when it comes to determining the earth grid requirements. In this paper, the soil structure and its implication on the electrode resistance of HV transmission poles will be explored. In Addition, this paper will present simulation for various soil structures using IEEE and Australian standards to verify the computation with CDEGS software. Furthermore, the split factor behavior under different soil resistivity structure will be presented using CDEGS simulations.Keywords: Earth Grid, EPR, High Voltage, Soil Resistivity Structure, Split Factor, Step Voltage, Touch Voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282914 Very High Speed Data Driven Dynamic NAND Gate at 22nm High K Metal Gate Strained Silicon Technology Node
Authors: Shobha Sharma, Amita Dev
Abstract:
Data driven dynamic logic is the high speed dynamic circuit with low area. The clock of the dynamic circuit is removed and data drives the circuit instead of clock for precharging purpose. This data driven dynamic nand gate is given static forward substrate biasing of Vsupply/2 as well as the substrate bias is connected to the input data, resulting in dynamic substrate bias. The dynamic substrate bias gives the shortest propagation delay with a penalty on the power dissipation. Propagation delay is reduced by 77.8% compared to the normal reverse substrate bias Data driven dynamic nand. Also dynamic substrate biased D3nand’s propagation delay is reduced by 31.26% compared to data driven dynamic nand gate with static forward substrate biasing of Vdd/2. This data driven dynamic nand gate with dynamic body biasing gives us the highest speed with no area penalty and finds its applications where power penalty is acceptable. Also combination of Dynamic and static Forward body bias can be used with reduced propagation delay compared to static forward biased circuit and with comparable increase in an average power. The simulations were done on hspice simulator with 22nm High-k metal gate strained Si technology HP models of Arizona State University, USA.Keywords: Data driven nand gate, dynamic substrate biasing, nand gate, static substrate biasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616913 Comprehensive Nonlinearity Simulation of Different Types and Modes of HEMTs with Respect to Biasing Conditions
Authors: M. M. Karkhanehchi, A. Ammani
Abstract:
A simple analytical model has been developed to optimize biasing conditions for obtaining maximum linearity among lattice-matched, pseudomorphic and metamorphic HEMT types as well as enhancement and depletion HEMT modes. A nonlinear current-voltage model has been simulated based on extracted data to study and select the most appropriate type and mode of HEMT in terms of a given gate-source biasing voltage within the device so as to employ the circuit for the highest possible output current or voltage linear swing. Simulation results can be used as a basis for the selection of optimum gate-source biasing voltage for a given type and mode of HEMT with regard to a circuit design. The consequences can also be a criterion for choosing the optimum type or mode of HEMT for a predetermined biasing condition.Keywords: Biasing, characteristic, linearity, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500912 Non-Isolated Direct AC-DC Converter Design with BCM-PFC Circuit
Authors: Y. Kobori, L. Xing, H. Gao, N.Onozawa, S. Wu, S. N. Mohyar, Z. Nosker, H. Kobayashi, N. Takai, K. Niitsu
Abstract:
This paper proposes two types of non-isolated direct AC-DC converters. First, it shows a buck-boost converter with an H-bridge, which requires few components (three switches, two diodes, one inductor and one capacitor) to convert AC input to DC output directly. This circuit can handle a wide range of output voltage. Second, a direct AC-DC buck converter is proposed for lower output voltage applications. This circuit is analyzed with output voltage of 12V. We describe circuit topologies, operation principles and simulation results for both circuits.Keywords: AC-DC converter, Buck-boost converter, Buck converter, PFC, BCM PFC circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4792911 Direct Power Control Strategies for Multilevel Inverter Based Custom Power Devices
Authors: S. Venkateshwarlu, B. P. Muni, A. D. Rajkumar, J. Praveen
Abstract:
Custom power is a technology driven product and service solution which embraces a family devices such as Dynamic Voltage Restorer (DVR), Distributed Shunt Compensator (DSTATCOM), Solid State Breaker (SSB) etc which will provide power quality functions at distribution voltages. The rapid response of these devices enables them to operate in real time, providing continuous and dynamic control of the supply including voltage and reactive power regulation, harmonic reduction and elimination of voltage dips. This paper presents the benefits of multilevel inverters when they are used for DPC based custom power devices. Power flow control mechanism, salient features, advantages and disadvantages of direct power control (DPC) using lookup table, SVM, predictive voltage vector and hybrid DPC strategies are discussed in this paper. Simulation results of three level inverter based STATCOM, harmonic analysis of multi level inverters are presented at the end.Keywords: DPC, DPC-SVM, Dynamic voltage restorer, DSTATCOM, Multilevel inverter, PWM Converter, PDPC, VF-DPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963