
 

 

 
Abstract—In Computational Fluid Dynamics (CFD), there are a 

variety of numerical methods, of which some depend on macroscopic 
model representatives. These models can be solved by finite-volume, 
finite-element or finite-difference methods on a microscopic 
description. However, the lattice Boltzmann method (LBM) is 
considered to be a mesoscopic particle method, with its scale lying 
between the macroscopic and microscopic scales. The LBM works 
well for solving incompressible flow problems, but certain limitations 
arise from solving compressible flows, particularly at high Mach 
numbers. An improved lattice Boltzmann model for compressible 
flow problems is presented in this research study. A higher-order 
Taylor series expansion of the Maxwell equilibrium distribution 
function is used to overcome limitations in LBM when solving high-
Mach-number flows. Large eddy simulation (LES) is implemented in 
LBM to simulate turbulent jet flows. The results have been validated 
with available experimental data for turbulent compressible free jet 
flow at subsonic speeds. 
 

Keywords—Compressible lattice Boltzmann metho-, large eddy 
simulation, turbulent jet flows. 

I. INTRODUCTION 

HE LBM is a relatively new approach as an alternative 
numerical method for modeling physical phenomena in 

fluid flows. It was originally developed from the lattice gas 
automata method (LGA) [1], which can be constructed as a 
simplified fictitious molecular dynamics model in which 
space, time, and particle velocities are all discrete [2]. LBM is 
known to be a new powerful tool to simulate various 
incompressible flows. However, LBM has also been found 
with a significant limitation in solving high-Mach-number 
compressible flows. The major cause of this limitation is the 
contraction in the Maxwellian distribution function, which 
should be in the polynomial form of particle velocity [3]. So 
the truncated equilibrium distribution function inevitably 
limits the range of the applicable Mach number. In the 
literature, there have been many recent successful models 
reported to solve compressible flow problems using LBM. 
Shouxin et al. [4] introduced two lattice models: D2Q13 and 
D3Q17, which depend on three energy levels for the density 
distribution function. The difficulty of using these two models 
is that there are many parameters in the models which were 
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chosen based on physical concepts. Shan and He [5] 
introduced a new model for compressible LBM using a third-
order Maxwell-Boltzmann equilibrium distribution function to 
reduce the truncation error and demonstrated success in 
solving compressible flow problems with Mach numbers up to 
𝑀 0.6. Other researchers proposed to develop alternative 
equilibrium distribution functions instead of higher-order 
Maxwell-Boltzmann equilibrium distribution functions. For 
example, Kataoka and Tsutahara [6], [7] presented two 
compressible LBM models based on the specific heat energy 
which cannot be chosen freely and introduced a new 
coefficient to control the specific-heat at any location on a 
lattice grid. Qu et al. [8] proposed a novel method of replacing 
the Maxwell-Boltzmann equilibrium distribution function with 
a circular lattice distribution function, which is a probability 
distribution of a random variable in terms of angle. In this 
model, they avoided the truncation error due to the use of the 
Maxwell-Boltzmann distribution equation and increased the 
range of applicable Mach number in LBM to the supersonic 
flow regimes.  

II. LATTICE BOLTZMANN METHOD 

The Boltzmann equation for a system without an external 
force can be expressed as: 

 

 𝑐 . 𝛻𝑓 Ω  (1) 

 
where Ω the is collision operator, 𝑓  is the distribution function 
and 𝑐  is the lattice speed. 

Bhatnagar, Gross and Krook (BGK) [9] proposed a model 
for the collision operator in the Boltzmann equation as: 

 

 Ω 𝜔 𝑓 𝑓
∆

𝑓 𝑓    (2) 
 

where 𝜔
∆

 in (2), 𝜔 is the collision frequency, 𝜏 is the 

relaxation factor, ∆𝑡 is the time and 𝑓  is the local 
equilibrium distribution function. 

Now we can rewrite the Boltzmann equation in a specific 
particle velocity direction as: 

 

 𝑐 . ∇𝑓 ∆ 𝑓 𝑓     (3) 

 
And this equation can be discretized in space and time as: 
 

𝑓 𝑥 𝑐 ∆𝑡, 𝑡 ∆𝑡 𝑓 𝑥, 𝑡
∆

𝑓 𝑥, 𝑡

𝑓 𝑥, 𝑡   
(4) 
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As we can see, the beauty of this equation lies in its 
simplicity, and it can be applied to many fluid mechanics 
problems. The Maxwell–Boltzmann distribution is a statistical 
probability distribution. It is used to describe particle speeds 
for ideal gases, where the particles move freely inside a 
stationary container. The interaction between particles is 
neglected, except for very brief collisions. These collisions 
lead to a very small change in the energy and momentum 
within the environment. A good choice of the equilibrium 
distribution function is the key for applying LBM to a wide 
range of fluid flow problems in different conditions [10]. The 
implication of this is that different equilibrium distribution 
functions may be required in compressible LBM than for 
incompressible LBM. An expansion of the Maxwell-
Boltzmann distribution up to 2nd-order in velocities gives us: 

 

𝑓 𝑥, 𝑡 𝜔 𝜌  1  
⃗  . ⃗

 
⃗  . ⃗

 
⃗

  𝛰 𝑢   (5) 

 

where 𝑐
√

 is the sound speed and 𝜔 is the lattice weight 

factor. 

III. COMPRESSIBLE LATTICE BOLTZMANN METHOD 

In conventional LBM for solving incompressible flow, the 
2nd-order truncation of the Hermite expansion is commonly 
used to integrate the equilibrium distribution function in the 
discrete particle velocity space. Shan and Chen [11] used a 
3rd-order expansion of the equilibrium distribution function 
together with the BGK collision term. They also proved that 
the discretization of the continuum distribution function into 
values at the nodes (or abscissas) of a quadrature formula is 
equivalent to the truncation of the higher-order terms in the 
Hermite spectral space. We can extend Shan & He’s model by 
including up to the 5th-order terms in the Taylor expansion of 
the Maxwell-Boltzmann equilibrium distribution function as 
shown below: 

 

𝑓 �⃗�, 𝑡  𝜔 𝜌  1  𝑐 . 𝑢 𝑐 . 𝑢 𝑢

𝑐 𝐷 . 𝑐 . 𝑢 3𝑢

𝑐 . 𝑢 𝑐 𝐷 2

𝑐 . 𝑢 6 𝑐 . 𝑢 𝑢 3𝑢 𝑐 𝐷

2 𝑐 . 𝑢 𝑢 2 𝑐 . 𝑢 𝑐

2 𝐷 2 𝑐 𝐷 𝐷 2

𝑐 . 𝑢 10 𝑐 . 𝑢 𝑢 15𝑢 𝑢 𝑐

𝐷 4 𝑐 . 𝑢 𝑢 2 𝑐 . 𝑢 𝑢 𝑐

2 𝐷 2 𝑐 𝐷 2 𝐷 4 ,  

(6) 

 

where  denotes the spatial directions in Cartesian 
coordinates, D is the spatial dimension, T is the temperature, u 
is the fluid velocity,  is the fluid density. 

The macroscopic variables are obtained from mass 
conservation, momentum conservation, and the equation of 
state, respectively: 

 

𝜌 ∑ 𝑓   (7) 
 

𝜌𝑢 ∑ 𝑓  𝑐   (8) 
 

 𝑃 𝜌𝑐  (9) 

IV. SUBGRID SCALE MODELING OF TURBULENT FLOWS 

USING LBM 

The LBM has become one of the most popular numerical 
tools for simulating fluid flow because of its simplicity, 
applicability in parallel computing and the ease of solving 
complex geometries. In the past few years, LBM was used 
only as a direct numerical simulation method. Thus LBM was 
restricted to solving relatively low-Reynolds-number flows. 
To solve highly turbulent flows, we have to implement a LES 
subgrid-scale (SGS) model in LBM. The main idea behind the 
SGS is to include all the physical effects the unresolved eddy 
motion has on the resolved fluid motion. To model the 
unresolved scales of motion at high Reynolds numbers, SGS 
models are often employed. The SGS models for LES define 
the formalism of an effective eddy-viscosity model. In order to 
apply the SGS model in LBM a special filtering operation 
𝜛 𝑥  is required and it is often introduced as: 

 
𝜛 𝑥 𝜔 𝑥 𝐺 𝑥, �́� 𝑑�́�  (10) 

 
where 𝜛 is a spatially dependent quantity. It can represent 
density, velocity or any other physical quantity. G is a spatial 
filter kernel function defined as follows: 
 

𝐺 𝑥 , 𝑥
𝑓𝑜𝑟 |𝑥 𝑥 |  ,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,       
  (11) 

 
where Δ  is the filter width. 

The most popular subgrid model is the Smagorinsky model 
[12], where the anisotropic part of the Reynolds stress term is 
modeled as: 

 

𝜏 𝜏 2𝑣 𝑆̅ 2𝐶 Δ |𝑆̅|𝑆̅   (12) 

 
in which 𝛿  is the Kronecker delta function, 𝐶 is the 
Smagorinsky constant, Δ is the filter width, and 𝑆̅  is the 
magnitude of the large-scale strain rate tensor: 
 

|𝑆̅| 2𝑆̅  𝑆̅ .  (13) 

 
Similarly, we can write the filtered particle distribution 
function 𝑓̅ . 
 

𝑓̅ 𝑥 𝑓 𝑥 𝐺 𝑥, 𝑥 𝑑𝑥 .  (14) 
 
In the LES model, we write the filtered lattice Boltzmann 

equation with the BGK collision model into the following 
form: 
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̅ , , ̅ , , ̅ , , ̅ , ,
∗   (15) 

 
Equation (15) is similar to the lattice Boltzmann equation 

except with different relaxation time 𝜏∗ defined as: 
 

 𝜏∗ 𝜏 𝜏 , (16) 
 
where 𝜏∗ is the total effective relaxation time dependent on the 
turbulent eddy viscosity, 𝜏 is the laminar relaxation time and 
𝜏  is the turbulent relaxation time. 

The total viscosity is 
 

 𝑣∗ 𝑣 𝑣 , (17) 
 

where 𝑣 is the laminar viscosity 𝑣 𝜏 𝑐 𝛿𝑡, and 𝑣  is the 

turbulent viscosity 𝑣 𝐶 Δ 𝑆̅ . Now, the total effective 
relaxation time becomes: 

 

𝜏∗ 𝜏 ∆ |𝑆̅|. (18) 

 

Using a uniform grid 𝑐 1, leading to 𝑐 1/3. 

This in turn gives 
 

𝜏∗
| |

| ̅|
 , (19) 

 
where the non-equilibrium stress tensor invariant |𝑆̅| is given 
as: 
 

𝑄  ∑ 𝑐 𝑐 𝑓̅ 𝑓̅ ,  
 

(20) 
 

|𝑆̅|   

∆
|𝑆̅|  | |

∆
0  (21) 

 
We solving (21) for |𝑆̅| and substituting the positive 

solution of |𝑆̅| into (18) to obtain the total effective relaxation 
time 𝜏∗ as: 
 

𝜏∗ 𝜏
∆

  
|𝑄| 𝑡 .  (22) 

V. RESULTS AND DISCUSSION 

In this case study, where the Reynolds number is high, the 
results will be validated against the experimental data for a 
square jet at different locations along the jet centerline 
0 𝑋 𝐷 4⁄ , where the streamwise velocity is almost 

constant, and Reynolds number plays a main role in the jet 
development. The mean velocity along the jet centerline and 
the cross-section velocity profile at different distances from 
the jet exit 𝑈  will be compared with experimental results. Fig. 
1 shows the schematic of the square jet nozzle and the 
reference system where 𝑈  is the local centerline velocity, and 
𝑢  is the instantaneous streamwise velocity at any (y, z) 
location. 

 

 

Fig. 1 Schematic of a square jet nozzle and the reference system 
 

The evolution of mean velocity distributions and the 
streamwise turbulent intensity at 𝑋 𝐷 0.5⁄  along with the 
experimental results from Ghasemi [13] are shown in Fig. 2. 
The mean jet velocity and the turbulent intensity are 
normalized to the jet exit velocity at the centerline which is the 
maximum mean velocity 𝑈 𝑥 . The results in Fig. 2 (a) 
show that there is no effect from the free shear layer, so the 
mean velocity will be constant and equal to the jet exit 
velocity. Fig. 2 (b) shows turbulence intensity distributions, 
which mainly depend on the Reynolds number [14]. These 
distributions appear to decrease with an increase in the 
Reynolds number. The turbulent intensity is confined to the jet 
centerline region, where there are no effects from the mixing 
shear layer yet. 

Fig. 3 shows the spanwise velocity profiles of the mean 
streamwise velocity at different locations along the jet axial 
direction 𝑋 𝐷⁄ 1,2,3,4, and 5) in the near-field region of the 
square jet. In Fig. 3 (a) 𝑋 𝐷 1⁄  the flow is not affected by 
nearby free shear layer, and the velocity is almost constant 
between 𝑌 𝐷 0⁄  and  𝑌 𝐷 0.4⁄ , which is equal to the jet 
exit velocity 𝑈 . When moving a little bit farther from the jet 
exit in Figs. 3 (b), (c) 𝑋 𝐷 2⁄  and 𝑋 𝐷 3⁄ , the free shear 
layer has some effect on the jet core flow and the velocity 
starts to resemble the Gaussian profile. But it still has a flat hat 
at 𝑌 𝐷 0 0.3⁄ . When moving to the end of the near-field 
flow region at 𝑋 𝐷 4 5⁄  as shown in Figs. 3 (d), (e), the 
flow is fully developed and the velocity has a top-hat 
distribution. In general, the mean streamwise velocity profiles 
𝑢 /𝑈  decreases along the jet X-axis and in the radial 
direction away from the jet centerline, where free shear layers 
and mixing layers created turbulent flow region. These figures 
indicate that there is a good agreement at all locations along 
the streamwise direction between the experimental and LBM-
LES results. 

In conclusion, a LBM to solve compressible turbulent flow 
by using a higher-order distribution function and combined 
LBM with a LES SGS model to simulate a free jet at subsonic 
flow regime has been developed. The essential idea of 
applying LES in LBM is to define a space-filtered particle 
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distribution and to allow the dynamics of the filtered particle 
distribution to have a space-dependent relaxation. The LBM-
LES results compare well with the experimental data in terms 
of the mean streamwise velocity and the turbulent intensity at 

different downstream locations and the spreading rate of the 
jet. The LBM for compressible flows is still under 
development in the research community, and it can be an 
exciting research area with many possible applications. 

 

 

 

Fig. 2 (a) The spanwise distribution of mean streamwise velocity 𝑢 𝑈⁄ . (b) The streamwise turbulence intensity  𝑢 𝑈⁄  
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Fig. 3 (a) (b) The mean streamwise velocity profiles of the square jet at different locations along the jet X-axis 
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Fig. 3 (c), (d) The mean streamwise velocity profiles of the square jet at different locations along the jet X-axis 
 

 

Fig. 3 (e) The mean streamwise velocity profiles of the square jet at different locations along the jet X-axis 
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