Search results for: seismic type loading response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4189

Search results for: seismic type loading response

4069 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
4068 Developing of Fragility Curve for Two-Span Simply Supported Concrete Bridge in Near-Fault Area

Authors: S. Shirazian, M.R. Ghayamghamian, G.R. Nouri

Abstract:

Bridges are one of the main components of transportation networks. They should be functional before and after earthquake for emergency services. Therefore we need to assess seismic performance of bridges under different seismic loadings. Fragility curve is one of the popular tools in seismic evaluations. The fragility curves are conditional probability statements, which give the probability of a bridge reaching or exceeding a particular damage level for a given intensity level. In this study, the seismic performance of a two-span simply supported concrete bridge is assessed. Due to usual lack of empirical data, the analytical fragility curve was developed by results of the dynamic analysis of bridge subjected to the different time histories in near-fault area.

Keywords: Fragility curve, Seismic behavior, Time historyanalysis, Transportation Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
4067 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions

Authors: S. Mogili, J. S. Kuang, N. Zhang

Abstract:

Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.

Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
4066 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: Base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
4065 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: Ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
4064 The Effect of Geometry Dimensions on the Earthquake Response of the Finite Element Method

Authors: Morteza Jiryaei Sharahi

Abstract:

In this paper, the effect of width and height of the model on the earthquake response in the finite element method is discussed. For this purpose an earth dam as a soil structure under earthquake has been considered. Various dam-foundation models are analyzed by Plaxis, a finite element package for solving geotechnical problems. The results indicate considerable differences in the seismic responses.

Keywords: Geometry dimensions, finite element, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
4063 Seismic Vulnerability Assessment of Buildings in Algiers Area

Authors: F. Lazzali, M. Farsi

Abstract:

Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.

Keywords: Damage, EMS-98, inventory building, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
4062 High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor

Authors: Subrata Hait, Debabrata Mazumder

Abstract:

A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.

Keywords: Activated sludge process, shaft-type reactor, highrate treatment, carbonaceous wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3611
4061 Evaluation of Expected Annual Loss Probabilities of RC Moment Resisting Frames

Authors: Saemee Jun, Dong-Hyeon Shin, Tae-Sang Ahn, Hyung-Joon Kim

Abstract:

Building loss estimation methodologies which have been advanced considerably in recent decades are usually used to estimate socio and economic impacts resulting from seismic structural damage. In accordance with these methods, this paper presents the evaluation of an annual loss probability of a reinforced concrete moment resisting frame designed according to Korean Building Code. The annual loss probability is defined by (1) a fragility curve obtained from a capacity spectrum method which is similar to a method adopted from HAZUS, and (2) a seismic hazard curve derived from annual frequencies of exceedance per peak ground acceleration. Seismic fragilities are computed to calculate the annual loss probability of a certain structure using functions depending on structural capacity, seismic demand, structural response and the probability of exceeding damage state thresholds. This study carried out a nonlinear static analysis to obtain the capacity of a RC moment resisting frame selected as a prototype building. The analysis results show that the probability of being extensive structural damage in the prototype building is expected to 0.01% in a year.

Keywords: Expected annual loss, Loss estimation, RC structure, Fragility analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
4060 Seismic Performance of Masonry Buildings in Algeria

Authors: F. Lazzali, S. Bedaoui

Abstract:

Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

Keywords: Masonry building, seismic deficiencies, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
4059 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel  structures to reduce lateral displacement and dissipate energy during  earthquake motions. Concentric steel bracing provide an excellent  approach for strengthening and stiffening steel buildings. Using these  braces the designer can hardly adjust the stiffness together with  ductility as needed because of buckling of braces in compression. In  this study the use of SMA bracing and steel bracing (Mega) utilized  in steel frames are investigated. The effectiveness of these two  systems in rehabilitating a mid-rise eight-storey steel frames were  examined using time-history nonlinear analysis utilizing seismostruct  software. Results show that both systems improve the strength and  stiffness of the original structure but due to excellent behavior of  SMA in nonlinear phase and under compressive forces this system  shows much better performance than the rehabilitation system of  Mega bracing.

 

Keywords: Finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4160
4058 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
4057 Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions

Authors: Peyman Amini Motlagh, Ali Pak

Abstract:

Seismic retrofitting of important structures is essential in seismological active zones. The importance is doubled when it comes to some buildings like schools, hospitals, bridges etc. because they are required to continue their serviceability even after a major earthquake. Generally, seismic retrofitting codes have paid little attention to retrofitting of foundations due to its construction complexity. In this paper different methods for seismic retrofitting of tall buildings’ foundations will be discussed and evaluated. Foundations are considered in three different categories. First, foundations those are in danger of liquefaction of their underlying soil. Second, foundations located on slopes in seismological active regions. Third, foundations designed according to former design codes and may show structural defects under earthquake loads. After describing different methods used in different countries for retrofitting of the existing foundations in seismological active regions, comprehensive comparison between these methods with regard to the above mentioned categories is carried out. This paper gives some guidelines to choose the best method for seismic retrofitting of tall buildings’ foundations in retrofitting projects.

Keywords: Existing foundation, landslide, liquefaction, seismic retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4250
4056 Load Discontinuity in Shock Response and Its Remedies

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

It has been shown that a load discontinuity at the end of an impulse will result in an extra impulse and hence an extra amplitude distortion if a step-by-step integration method is employed to yield the shock response. In order to overcome this difficulty, three remedies are proposed to reduce the extra amplitude distortion. The first remedy is to solve the momentum equation of motion instead of the force equation of motion in the step-by-step solution of the shock response, where an external momentum is used in the solution of the momentum equation of motion. Since the external momentum is a resultant of the time integration of external force, the problem of load discontinuity will automatically disappear. The second remedy is to perform a single small time step immediately upon termination of the applied impulse while the other time steps can still be conducted by using the time step determined from general considerations. This is because that the extra impulse caused by a load discontinuity at the end of an impulse is almost linearly proportional to the step size. Finally, the third remedy is to use the average value of the two different values at the integration point of the load discontinuity to replace the use of one of them for loading input. The basic motivation of this remedy originates from the concept of no loading input error associated with the integration point of load discontinuity. The feasibility of the three remedies are analytically explained and numerically illustrated.

Keywords: Dynamic analysis, load discontinuity, shock response, step-by-step integration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
4055 Performance Verification of Seismic Design Codes for RC Frames

Authors: Payam Asadi, Ali Bakhshi

Abstract:

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Keywords: RC frame, fragility curve, performance-base design, life-cycle cost analyses, seismic design codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
4054 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: Shallow foundation, seismic behavior, raft thickness, damping ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
4053 Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin - Sudan

Authors: S. E. Musa, N. E. Mohamed, N. A. Ahmed

Abstract:

In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460m to 1600m. These crossplots were successful to discriminate between sand and shale when using PImpedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.

Keywords: Basin, Blue Nile, Inversion, Seismic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
4052 Multi-Objective Optimization for Performance-based Seismic Retrofit using Connection Upgrade

Authors: Dong-Chul Lee, Byung-Kwan Oh, Se-Woon Choi, Hyo-Sun Park

Abstract:

The unanticipated brittle fracture of connection of the steel moment resisting frame (SMRF) occurred in 1994 the Northridge earthquake. Since then, the researches for the vulnerability of connection of the existing SMRF and for rehabilitation of those buildings were conducted. This paper suggests performance-based optimal seismic retrofit technique using connection upgrade. For optimal design, a multi-objective genetic algorithm(NSGA-II) is used. One of the two objective functions is to minimize initial cost and another objective function is to minimize lifetime seismic damages cost. The optimal algorithm proposed in this paper is performed satisfying specified performance objective based on FEMA 356. The nonlinear static analysis is performed for structural seismic performance evaluation. A numerical example of SAC benchmark SMRF is provided using the performance-based optimal seismic retrofit technique proposed in this paper

Keywords: connection upgrade, performace-based seismicdesign, seismic retrofit, multi-objective optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
4051 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.

Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
4050 Behaviour of Base-Isolated Structures with High Initial Isolator Stiffness

Authors: Ajay Sharma, R.S. Jangid

Abstract:

Analytical seismic response of multi-story building supported on base isolation system is investigated under real earthquake motion. The superstructure is idealized as a shear type flexible building with lateral degree-of-freedom at each floor. The force-deformation behaviour of the isolation system is modelled by the bi-linear behaviour which can be effectively used to model all isolation systems in practice. The governing equations of motion of the isolated structural system are derived. The response of the system is obtained numerically by step-by-method under three real recorded earthquake motions and pulse motions associated in the near-fault earthquake motion. The variation of the top floor acceleration, interstory drift, base shear and bearing displacement of the isolated building is studied under different initial stiffness of the bi-linear isolation system. It was observed that the high initial stiffness of the isolation system excites higher modes in base-isolated structure and generate floor accelerations and story drift. Such behaviour of the base-isolated building especially supported on sliding type of isolation systems can be detrimental to sensitive equipment installed in the building. On the other hand, the bearing displacement and base shear found to reduce marginally with the increase of the initial stiffness of the initial stiffness of the isolation system. Further, the above behaviour of the base-isolated building was observed for different parameters of the bearing (i.e. post-yield stiffness and characteristic strength) and earthquake motions (i.e. real time history as well as pulse type motion).

Keywords: base isolation, base shear, bi-linear, earthquake, floor accelerations, inter-story drift, multi-story building, pulsemotion, stiffness ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
4049 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis

Authors: N. F. Hanna, A. M. Haridy

Abstract:

One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.

Keywords: Modal analysis, pushover analysis, seismic performance, target displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
4048 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading

Authors: Y. S. Tai, M. Y. Huang, H. T. Hu

Abstract:

The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.

Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
4047 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze

Abstract:

In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure.

As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: Axial loading, rail force loading, rail structure, rail strength analysis, rail track stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
4046 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
4045 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading

Authors: Ashkan Shafee, Ahmad Fahimifar

Abstract:

There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.

Keywords: Deep excavation, pile group, inclined loading, lateral deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
4044 Modeling of PZ in Haunch Connections Systems

Authors: Peyman Shadman Heidari, Roohollah Ahmady Jazany, Mahmood Reza Mehran, Pouya Shadman Heidari, Mohammad khorasani

Abstract:

Modeling of Panel Zone (PZ) seismic behavior, because of its role in overall ductility and lateral stiffness of steel moment frames, has been considered a challenge for years. There are some studies regarding the effects of different doubler plates thicknesses and geometric properties of PZ on its seismic behavior. However, there is not much investigation on the effects of number of provided continuity plates in case of presence of one triangular haunch, two triangular haunches and rectangular haunch (T shape haunches) for exterior columns. In this research first detailed finite element models of 12tested connection of SAC joint venture were created and analyzed then obtained cyclic behavior backbone curves of these models besides other FE models for similar tests were used for neural network training. Then seismic behavior of these data is categorized according to continuity plate-s arrangements and differences in type of haunches. PZ with one-sided haunches have little plastic rotation. As the number of continuity plates increases due to presence of two triangular haunches (four continuity plate), there will be no plastic rotation, in other words PZ behaves in its elastic range. In the case of rectangular haunch, PZ show more plastic rotation in comparison with one-sided triangular haunch and especially double-sided triangular haunches. Moreover, the models that will be presented in case of triangular one-sided and double- sided haunches and rectangular haunches as a result of this study seem to have a proper estimation of PZ seismic behavior.

Keywords: Continuity plate, FE models, Neural network, Panel zone, Plastic rotation, Rectangular haunch, Seismic behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
4043 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: Hi-tech industries, seismic protection, automated stocker system, viscous fluid damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
4042 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames

Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan

Abstract:

The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.

Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464
4041 Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Authors: R. Abbasnia, F. Mohajeri Nav, S. Zahedifar, A. Tajik

Abstract:

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.

Keywords: Pushover Analysis, DAP, IDA, Torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
4040 Seismic Vulnerability Assessment of Masonry Buildings in Seismic Prone Regions: The Case of Annaba City, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

Seismic vulnerability assessment of masonry buildings is a fundamental issue even for moderate to low seismic hazard regions. This fact is even more important when dealing with old structures such as those located in Annaba city (Algeria), which the majority of dates back to the French colonial era from 1830. This category of buildings is in high risk due to their highly degradation state, heterogeneous materials and intrusive modifications to structural and non-structural elements. Furthermore, they are usually shelter a dense population, which is exposed to such risk. In order to undertake a suitable seismic risk mitigation strategies and reinforcement process for such structures, it is essential to estimate their seismic resistance capacity at a large scale. In this sense, two seismic vulnerability index methods and damage estimation have been adapted and applied to a pilot-scale building area located in the moderate seismic hazard region of Annaba city: The first one based on the EMS-98 building typologies, and the second one derived from the Italian GNDT approach. To perform this task, the authors took the advantage of an existing data survey previously performed for other purposes. The results obtained from the application of the two methods were integrated and compared using a geographic information system tool (GIS), with the ultimate goal of supporting the city council of Annaba for the implementation of risk mitigation and emergency planning strategies.

Keywords: Annaba city, EMS98 concept, GNDT method, old city center, seismic vulnerability index, unreinforced masonry buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594