Search results for: shapes memory alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 941

Search results for: shapes memory alloy

941 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie

Abstract:

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
940 Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys

Authors: Y.J. Lai, H.Y. Peng, M.W. Wu, J. Shaw

Abstract:

In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.

Keywords: Biomorphic Robot, Shape Memory Alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
939 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel  structures to reduce lateral displacement and dissipate energy during  earthquake motions. Concentric steel bracing provide an excellent  approach for strengthening and stiffening steel buildings. Using these  braces the designer can hardly adjust the stiffness together with  ductility as needed because of buckling of braces in compression. In  this study the use of SMA bracing and steel bracing (Mega) utilized  in steel frames are investigated. The effectiveness of these two  systems in rehabilitating a mid-rise eight-storey steel frames were  examined using time-history nonlinear analysis utilizing seismostruct  software. Results show that both systems improve the strength and  stiffness of the original structure but due to excellent behavior of  SMA in nonlinear phase and under compressive forces this system  shows much better performance than the rehabilitation system of  Mega bracing.

 

Keywords: Finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4159
938 Shape Memory alloy Actuator System Optimization for New Hand Prostheses

Authors: Mogeeb A. Ahmed, Mona F. Taher, Sayed M. Metwalli

Abstract:

Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.

Keywords: Optimization, Prosthetic hand, Shape memory alloy, Thermoelectric device, Actuator system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
937 Improvement of Load Carrying Capacity of an RCC T-Beam Bridge Longitudinal Girder by Replacing Steel Bars with SMA Bars

Authors: N. K. Paul, S. Saha

Abstract:

An innovative three dimensional finite element model has beed developed and tested under two point loading system to examine the structural behavior of the longitudinal reinforced concrete Tee-beam bridge girder, reinforcing with steel and shape memory alloy bars respectively. 25% of steel bars are replaced with superelastic Shape Memory Alloy bars in this study. Finite element analysis is performed using ANSYS 11.0 program. Experimentally a model of steel reinforced girder has been casted and its load deflection responses are checked with ANSYS analysis. A comparison of load carrying capacity for the model between steel RC girder and the girder combined reinforcement with SMA and steel are also performed.

Keywords: Shape memory alloy, bridge girder, ANSYS, load-deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
936 In vivo Histomorphometric and Corrosion Analysis of Ti-Ni-Cr Shape Memory Alloys in Rabbits

Authors: T. Ahmed, Z. Butt, M. Ali, S. Attiq, M. Ali

Abstract:

A series of Ti based shape memory alloys with composition of Ti50Ni49Cr1, Ti50Ni47Cr3 and Ti50Ni45Cr5 were developed by vacuum arc-melting under a purified argon atmosphere. The histometric and corrosion evaluation of Ti-Ni-Cr shape memory alloys have been considered in this research work. The alloys were developed by vacuum arc melting and implanted subcutaneously in rabbits for 4, 8 and 12 weeks. Metallic implants were embedded in order to determine the outcome of implantation on histometric and corrosion evaluation of Ti-Ni-Cr metallic strips. Encapsulating membrane formation around the alloys was minimal in the case of all materials. After histomorphometric analyses it was possible to demonstrate that there were no statistically significant differences between the materials. Corrosion rate was also determined in this study which is within acceptable range. The results showed the Ti- Ni-Cr alloy was neither cytotoxic, nor have any systemic reaction on living system in any of the test performed. Implantation shows good compatibility and a potential of being used directly in vivo system.

Keywords: Shape memory alloy, Ti-Ni-Fe, histomorphometric, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
935 On the Design of Shape Memory Alloy Locking Mechanism: A Novel Solution for Laparoscopic Ligation Process

Authors: Reza Yousefian, Michael A. Kia, Mehrdad Hosseini Zadeh

Abstract:

The blood ducts must be occluded to avoid loss of blood from vessels in laparoscopic surgeries. This paper presents a locking mechanism to be used in a ligation laparoscopic procedure (LigLAP I), as an alternative solution for a stapling procedure. Currently, stapling devices are being used to occlude vessels. Using these devices may result in some problems, including injury of bile duct, taking up a great deal of space behind the vessel, and bile leak. In this new procedure, a two-layer suture occludes a vessel. A locking mechanism is also required to hold the suture. Since there is a limited space at the device tip, a Shape Memory Alloy (SMA) actuator is used in this mechanism. Suitability for cleanroom applications, small size, and silent performance are among the advantages of SMA actuators in biomedical applications. An experimental study is conducted to examine the function of the locking mechanism. To set up the experiment, a prototype of a locking mechanism is built using nitinol, which is a nickel-titanium shape memory alloy. The locking mechanism successfully locks a polymer suture for all runs of the experiment. In addition, the effects of various surface materials on the applied pulling forces are studied. Various materials are mounted at the mechanism tip to compare the maximum pulling forces applied to the suture for each material. The results show that the various surface materials on the device tip provide large differences in the applied pulling forces.

Keywords: Laparoscopic surgery, ligation process, locking mechanism, Shape Memory Alloy (SMA) actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
934 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Authors: Mohamed Omar

Abstract:

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
933 Uniform Distribution of Ductility Demand in Irregular Bridges using Shape Memory Alloy

Authors: Seyed Mohyeddin Ghodratian, Mehdi Ghassemieh, Mohammad Khanmohammadi

Abstract:

Excessive ductility demand on shorter piers is a common problem for irregular bridges subjected to strong ground motion. Various techniques have been developed to reduce the likelihood of collapse of bridge due to failure of shorter piers. This paper presents the new approach to improve the seismic behavior of such bridges using Nitinol shape memory alloys (SMAs). Superelastic SMAs have the ability to remain elastic under very large deformation due to martensitic transformation. This unique property leads to enhanced performance of controlled bridge compared with the performance of the reference bridge. To evaluate the effectiveness of the devices, nonlinear time history analysis is performed on a RC single column bent highway bridge using a suite of representative ground motions. The results show that this method is very effective in limiting the ductility demand of shorter pier.

Keywords: bridge, ductility demand, irregularity, shape memory alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
932 Memory and Higher Cognition

Authors: A. Páchová

Abstract:

Working memory (WM) can be defined as the system which actively holds information in the mind to do tasks in spite of the distraction. Contrary, short-term memory (STM) is a system that represents the capacity for the active storing of information without distraction. There has been accumulating evidence that these types of memory are related to higher cognition (HC). The aim of this study was to verify the relationship between HC and memory (visual STM and WM, auditory STM and WM). 59 primary school children were tested by intelligence test, mathematical tasks (HC) and memory subtests. We have shown that visual but not auditory memory is a significant predictor of higher cognition. The relevance of these results are discussed.

Keywords: higher cognition, long-term memory, short-term memory, working memory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
931 Inefficiency of Data Storing in Physical Memory

Authors: Kamaruddin Malik Mohamad, Sapiee Haji Jamel, Mustafa Mat Deris

Abstract:

Memory forensic is important in digital investigation. The forensic is based on the data stored in physical memory that involve memory management and processing time. However, the current forensic tools do not consider the efficiency in terms of storage management and the processing time. This paper shows the high redundancy of data found in the physical memory that cause inefficiency in processing time and memory management. The experiment is done using Borland C compiler on Windows XP with 512 MB of physical memory.

Keywords: Digital Evidence, Memory Forensics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
930 The Application of Specialized Memory Manager in Interactive CAD Systems

Authors: Wei Song, Lian-he Yang

Abstract:

Interactive CAD systems have to allocate and deallocate memory frequently. Frequent memory allocation and deallocation can play a significant role in degrading application performance. An application may use memory in a very specific way and pay a performance penalty for functionality it does not need. We could counter that by developing specialized memory managers.

Keywords: Interactive CAD systems, Specialized Memory Manager.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
929 Effect of Preheating Temperature and Chamber Pressure on the Properties of Porous NiTi Alloy Prepared by SHS Technique

Authors: Wisutmethangoon S., Denmud N., Sikong L.

Abstract:

The fabrication of porous NiTi shape memory alloys (SMAs) from elemental powder compacts was conducted by selfpropagating high temperature synthesis (SHS). Effects of the preheating temperature and the chamber pressure on the combustion characteristics as well as the final morphology and the composition of products were studied. The samples with porosity between 56.4 and 59.0% under preheating temperature in the range of 200-300°C and Ar-gas chamber pressure of 138 and 201 kPa were obtained. The pore structures were found to be dissimilar only in the samples processed with different preheating temperature. The major phase in the porous product is NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3. The preheating temperature and the chamber pressure have very little effect on the phase constituent. While the combustion temperature of the sample was notably increased by increasing the preheating temperature, they were slightly changed by varying the chamber pressure.

Keywords: Combustion synthesis, porous materials, self propagating high temperature synthesis, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
928 Fluidity of A713 Cast Alloy with and without Scrap Addition using Double Spiral Fluidity Test: A Comparison

Authors: A.K. Birru, D Benny Karunakar, M. M. Mahapatra

Abstract:

Recycling of aluminum alloys often decrease fluidity, consequently influence the castability of the alloy. In this study, the fluidity of Al-Zn alloys, such as the standard A713 alloy with and without scrap addition has been investigated. The scrap added was comprised of contaminated alloy turning chips. Fluidity measurements were performed with double spiral fluidity test consisting of gravity casting of double spirals in green sand moulds with good reproducibility. The influence of recycled alloy on fluidity has been compared with that of the virgin alloy and the results showed that the fluidity decreased with the increase in recycled alloy at minimum pouring temperatures. Interestingly, an appreciable improvement in the fluidity was observed at maximum pouring temperature, especially for coated spirals.

Keywords: A713 alloy, Fluidity, Hexachloroethane, Pouring temperature, Recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
927 Memory Leak Detection in Distributed System

Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.

Abstract:

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
926 The Effects of 2wt% Cu Addition on the Corrosion Behavior of Heat Treated Al-6Si-0.5Mg-2Ni Alloy

Authors: A. Hossain, M. A. Gafur, F. Gulshan, A. S. W. Kurny

Abstract:

Al-Si-Mg-Ni(-Cu) alloys are widely used in the automotive industry. They have the advantage of low weight associated with low coefficient of thermal expansion and excellent mechanical properties – mainly at high temperatures. The corrosion resistance of these alloys in coastal area, particularly sea water, however is not yet known. In this investigation, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to evaluate the corrosion resistance of Al-6Si-0.5Mg-2Ni (-2Cu) alloys in simulated sea water environments. The potentiodynamic polarization curves reveal that 2 wt% Cu content alloy (Alloy-2) is more prone to corrosion than the Cu free alloy (Alloy-1). But the EIS test results showed that corrosion resistance or charge transfer resistance (Rct) increases with the addition of Cu. Due to addition of Cu and thermal treatment, the magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg-2Ni alloy in NaCl solution were shifted to the more noble direction.

Keywords: Al-Si alloy, potentiodynamic polarization, EIS, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
925 Phase Transformation Temperatures for Shape Memory Alloy Wire

Authors: Tan Wee Choon, Abdul Saad Salleh, Saifulnizan Jamian, Mohd. Imran Ghazali

Abstract:

Phase transformation temperature is one of the most important parameters for the shape memory alloys (SMAs). The most popular method to determine these phase transformation temperatures is the Differential Scanning Calorimeter (DSC), but due to the limitation of the DSC testing itself, it made it difficult for the finished product which is not in the powder form. A novel method which uses the Universal Testing Machine has been conducted to determine the phase transformation temperatures. The Flexinol wire was applied with force and maintained throughout the experiment and at the same time it was heated up slowly until a temperature of approximately 1000C with direct current. The direct current was then slowly decreased to cool down the temperature of the Flexinol wire. All the phase transformation temperatures for Flexinol wire were obtained. The austenite start at 52.540C and austenite finish at 60.900C, while martensite start at 44.780C and martensite finish at 32.840C.

Keywords: Phase transformation temperature, Robotic, Shapememory alloy, Universal Testing Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
924 Recycling of Tungsten Alloy Swarf

Authors: A. A. Alhazza

Abstract:

The recycling process of Tungsten alloy (Swarf) by oxidation reduction technique have been investigated. The reduced powder was pressed under a pressure 20Kg/cm2 and sintered at 1150°C in dry hydrogen atmosphere. The particle size of the recycled alloy powder was 1-3 μm and the shape was regular at a reduction temperature 800°C. The chemical composition of the recycled alloy is the same as the primary Swarf.

Keywords: Recycling, Swarf, Oxidation, Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
923 Structure-Phase States of Al-Si Alloy after Electron-Beam Treatment and Multicycle Fatigue

Authors: Krestina V. Alsaraeva, Victor E. Gromov, Sergey V. Konovalov, Anna A. Atroshkina

Abstract:

Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increases in fatigue life of the material have been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.

Keywords: Al-19.4Si alloy, high intensive electron beam, multicycle fatigue, structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
922 Microstructure and Aging Behavior of Nonflammable AZ91D Mg Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment could be performed at temperatures from 400 to 450oC. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y; however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs.

Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
921 Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy

Authors: Wisutmethangoon S., Pannaray S., Plookphol T., Wannasin J.

Abstract:

2024 Aluminum alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175°C for 36h. Upon investigation the microstructure by using transmission electron microscopy (TEM), the S’ phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol.

Keywords: 2024 aluminum alloy, Gas induced semi solid, T6 heat treatment, Aged hardening, Transmission electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
920 Precipitation Hardening Behavior of Directly Cold Rolled Al-6Mg Alloy Containing Ternary Sc and Quaternary Zi/Ti

Authors: M. S. Kaiser

Abstract:

Ageing of 75% cold rolled Al-6Mg alloy with ternary 0.4 wt% scandium and quaternary zirconium and titanium has been carried out. Alloy samples are naturally, isochronally and isothermally aged for different time and temperatures. Hardness values of the differently processed alloys have been measured to understand the ageing behavior of Al-6Mg alloy with scandium and quaternary zirconium and titanium addition. Resistivity changes with annealing time and temperature were measured to understand the precipitation behavior and recovery of strain of the alloy. Attempts were also made to understand the grain refining effect of scandium in Al-6Mg alloy. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides and the dendrites of the Al-6Mg alloy have been refined significantly due to addition of scandium.

Keywords: Al-Mg alloys, age hardening, resistivity, metastable phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
919 Model Checking Consistency of UML Diagrams Using Alloy

Authors: Akie Nimiya, Tomoyuki Yokogawa, Hisashi Miyazaki, Sousuke Amasaki, Yoichiro Sato, Michiyoshi Hayase

Abstract:

In this paper, we proposed a method for detecting consistency violation between UML state machine diagrams and communication diagrams using Alloy. Using input language of Alloy, the proposed method expresses system behaviors described by state machine diagrams, message sequences described by communication diagrams, and a consistency property. As a result of application for an example system, we confirmed that consistency violation could be detected using Alloy correctly.

Keywords: Model checking, UML, state machine diagrams, communication diagram, alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
918 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
917 The Characterisation of TLC NAND Flash Memory, Leading to a Definable Endurance/Retention Trade-Off

Authors: Sorcha Bennett, Joe Sullivan

Abstract:

Triple-Level Cell (TLC) NAND Flash memory at, and below, 20nm (nanometer) is still largely unexplored by researchers, and with the ever more commonplace existence of Flash in consumer and enterprise applications there is a need for such gaps in knowledge to be filled. At the time of writing, there was little published data or literature on TLC, and more specifically reliability testing, with a further emphasis on both endurance and retention. This paper will give an introduction to NAND Flash memory, followed by an overview of the relevant current research on the reliability of Flash memory, along with the planned future work which will provide results to help characterise the reliability of TLC memory.

Keywords: TLC NAND flash memory, reliability, endurance, retention, trade-off, raw flash, patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
916 Development of UiTM Robotic Prosthetic Hand

Authors: M. Amlie A. Kasim, Ahsana Aqilah, Ahmed Jaffar, Cheng Yee Low, Roseleena Jaafar, M. Saiful Bahari, Armansyah

Abstract:

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Keywords: Prosthetic hand, Biomimetic actuation, Shape Memory Alloy, Tactile sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
915 Effect of Chromium Behavior on Mechanical and Electrical Properties of P/M Copper-Chromium Alloy Dispersed with VGCF

Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda

Abstract:

Microstructural and electrical properties of Cu-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.

Keywords: Powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
914 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25wt.%Y, a large amount of pro-eutectic a phase have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.

Keywords: Sn-Zn eutectic alloy, Yttrium, FactSage®, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
913 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: Elastic deformation, heating, shape-memory polymers, stress-strain behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
912 Design and Implementation of a Memory Safety Isolation Method Based on the Xen Cloud Environment

Authors: Dengpan Wu, Dan Liu

Abstract:

In view of the present cloud security problem has increasingly become one of the major obstacles hindering the development of the cloud computing, put forward a kind of memory based on Xen cloud environment security isolation technology implementation. And based on Xen virtual machine monitor system, analysis of the model of memory virtualization is implemented, using Xen memory virtualization system mechanism of super calls and grant table, based on the virtual machine manager internal implementation of access control module (ACM) to design the security isolation system memory. Experiments show that, the system can effectively isolate different customer domain OS between illegal access to memory data.

Keywords: Cloud security, memory isolation, Xen, virtual machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285