
 

 

  
Abstract—This paper presents modeling and optimization of two 

NP-hard problems in flexible manufacturing system (FMS), part type 
selection problem and loading problem. Due to the complexity and 
extent of the problems, the paper was split into two parts. The first 
part of the papers has discussed the modeling of the problems and 
showed how the real coded genetic algorithms (RCGA) can be 
applied to solve the problems. This second part discusses the 
effectiveness of the RCGA which uses an array of real numbers as 
chromosome representation. The novel proposed chromosome 
representation produces only feasible solutions which minimize a 
computational time needed by GA to push its population toward 
feasible search space or repair infeasible chromosomes. The proposed 
RCGA improves the FMS performance by considering two 
objectives, maximizing system throughput and maintaining the 
balance of the system (minimizing system unbalance). The resulted 
objective values are compared to the optimum values produced by 
branch-and-bound method. The experiments show that the proposed 
RCGA could reach near optimum solutions in a reasonable amount of 
time. 
 

Keywords—Flexible manufacturing system, production planning, 
part type selection problem, loading problem, real-coded genetic 
algorithm 

I. INTRODUCTION 

MS is integrating hardware and software elements and 
defined as ‘a collection of production equipment logically 

organized under a host computer and physically connected by 
a central transport system’  [1]. The hardware elements are 
made up of computer numerically controlled (CNC) machines 
equipped with tool magazine, pallet, loading and unloading 
station, buffer for processing parts, material transport and 
handling equipment such as automated guide vehicle (AGV) 
and conveyor [2][3]. The software elements consist of 
standard FMS software from supplier such as CNC program 
and traffic management software and may be enhanced by 
specific software required by user [1][4][5]. 

FMS have emerged as the response of a rapid change of 
consumer’s demand on a wide variety of products in low to 
medium volumes, shortening of product lifetimes and the 
increasing competition in national and global market [6][7].  
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These objectives may be achieved by the flexibility of FMS 

which lead to higher utilization of resources such as machines 
and tools. Generally, the flexibility of FMS can be divided into 
two categories which may be divided into several sub 
categories. The first is machine flexibility. By using high 
technologies, machines configuration can be changed easily by 
attaching different tools to produce new type of products for 
different market segments [7][8]. The second is routing 
flexibility. Higher productivity and profitability can be 
achieved by enabling flexibility of production routes. It means 
that one product may be produced by a number of alternative 
machines and as the result is the increase of a machines 
utilization and the decrease of a processing time [9][10].The 
FMS has a potential as a strategic tool in manufacturing 
industries and its successful implementation depends to the 
quality of its production planning. Therefore, an appropriate 
production planning for the FMS must be established to adapt 
with the increasing automation and complexity of 
manufacturing systems [10]. The production planning is 
conducted to ensure an efficient production process. Its 
important role in determining the responsiveness and the 
efficiency of the FMS make production planning a promising 
research area [6][11].There are several issues in the production 
planning stage such as part type selection problem, machine 
grouping problem, production ratio problem, resource 
allocation problem, and loading problem [12][13]. Definition 
of the part type selection and loading problem has been 
discussed in the first part of this paper. The machine grouping 
problem deals with arrangement of similar machines into 
identical machines groups so each machine on the same group 
could perform the same operations. The production ratio 
problem determines the ratio of selected set of part type should 
be produced over time. Resource allocation problem deals 
with allocation of the limited number of pallets and fixtures to 
the part types. Depend on the specific characteristic of 
manufacturing environments, various combination of some 
production planning problems have been considered in the 
literatures. For example, Bilgin & Azizoglu [14], Chan & 
Swarnkar [15], and Chen & Ho [16] solved the machine 
loading problem. Swarnkar & Tiwari [17], Choudhary, Tiwari 
& Harding [18], Biswas & Mahapatra [7], Ponnambalam & 
Kiat [19], and Prakash et al. [20] solved the part type selection 
and loading problem simultaneously. Tabucanon, Batanov & 
Basu [21] solved the part type selection and loading problem 
simultaneously in the first stage and used the result on this 
stage to determine the production ratio in the next stage. 
However, the routing flexibility was not considered. Kim et al. 
[22] solved the loading problem and the partial machine 
grouping while considering tool life constraints.  
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TABLE I 
TEST-BED PROBLEMS 

problem 
num. of 

part types 
num. of 

machines 
num. of 

tool types 
scheduling 

period 

1 8 4 20 4000 

2 8 5 25 4000 

3 10 4 20 4000 

4 10 5 25 4000 

5 16 4 20 7000 

6 16 5 25 7000 

7 18 4 20 7000 

8 18 5 25 7000 

9 24 4 20 10000 

10 24 5 25 10000 

11 26 4 20 10000 

12 26 5 25 10000 

 
Seok Shin, Park & Keun Kim [23] solved the loading 

problem while considering a various flexibility such as 
machine, sequence, tool and process routing. This paper 
focuses on the part type selection and loading problem with 
machine and tool flexibility. 

A various approaches have been proposed to solve the 
optimization of the production planning problems such as 
mathematical programming [21], Lagrangean relaxation 
approach [14], genetic algorithms [16][18], particle swarm 
optimization [7][19], ant colony optimization [15], immune 
algorithm [20], two-stage heuristics based on a bin-packing 
algorithms and a simple search technique [22], multi-agent 
system [24], and symbiotic evolutionary algorithm [23]. A 
combination of two methods was also used such as hybridizing 
genetic algorithm with simulated annealing [25][26], and 
hybrid tabu search and simulated annealing-based [17]. Here, 
heuristic methods is widely used since direct methods which 
are based on mathematical programming and smart 
enumeration are not practical to solve these complex problems 
[27]. This paper proposes a GA which uses an array of real 
numbers as chromosome representation so the GA can be 
called the real coded GA (RCGA). 

II.  REVIEW OF PART I 

In part I, we considered a FMS which consists several 
machines. The machines can perform different operations 
when they are equipped with different tools. Each part type has 
a production requirement in form of sequence of operations. 
Each operation can be processed on several alternative 
machines with several alternative tools. Time needed for parts’ 
operations depend on the assigned machine. Here, the FMS 
has machine and tool flexibility. Two common objectives 
considered in literatures, maximizing system throughput and 
maintaining the balance of the system (minimizing system 
unbalance), were explained. 

 
 
 

TABLE II 
RANDOMLY GENERATED PARAMETERS 

Parameters Range 

tool slot capacity of each machine 40-60 

number of copies of each tool type 2-(nMac-1) 

number of slots required for each tool type 3-7 

number of operations of each part type 2-(nMac) 

batch size of each part type 40-60 

value of each part type (dollar) 5-10 

number of possible machines for each operation 1-3 

processing time of each operation 20-40 

number of tool types required for each operation 2-5 

nMac: number of machines 

 
A chromosome construction for the real-coded GA (RCGA) 

was also explained. The chromosome is a vector of real 
number whose size is same with the number of part types. Two 
crossover methods (flat-crossover and extended-intermediate-
crossover) and two mutation methods (random exchange 
mutation and simple-random-mutation) were used to produce 
new generations. A fitness function which is used to measure 
the goodness of the solution was constructed by using two 
objective functions of the optimization of the part type 
selection and machine loading problem, minimizing system 
unbalance and maximizing system throughput. A simple 
problem set was given to demonstrate how the proposed 
RCGA solved the problem and produced an optimum solution 
in reasonable amount of time. 

III.  RESULT AND DISCUSSION 

To evaluate the performance of the RCGA, we generate 12 
test-bed problems as shown in Table 1. Problems 1 to 4 are 
considered as small size problems, problems 5 to 8 are 
medium size problems and problems 5 to 8 are large size 
problems. Lengths of scheduling period for all machines are 
same within each problem. The other randomly generated 
parameters are shown in Table 2.  

The RCGA is implemented in Java and experiment is 
carried out on personal computer equipped with Intel® Core™ 
i3-380 processor working at speed 2.53 GHz. The first step in 
our experiment is determining the most suitable selection 
method for the RCGA. Four common selection methods 
(roulette wheel, binary tournament, elitist, and replacement) 
are examined.  

 
The other parameters are set as follows:  

• Crossover rate is 0.25. 
• Mutation rate is 0.05 
• Population size is 500, 1000 and 1500 for small size 

problems, medium size problems and large size problems 
respectively. 

• The weighted parameters are α1=3 and α2=1.  
• GA iterations will be stopped after 5,000 successive 

generations no longer produces better results. 

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:6, No:9, 2012 

1930International Scholarly and Scientific Research & Innovation 6(9) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
9,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/6
94

.p
df



 

 

By using these parameters and data from problem 7, we run 
the RCGA 10 times and obtain results of minimum (Fmin), 
maximum (Fmax), and average (Favg) of fitness values as shown 
in Table 3. The average computation time (seconds) and 
number of iterations to obtain the best solution (itr best) are 
also presented. Here, the replacement selection method 
produces a higher of average of fitness value than other 
methods. Therefore, we use this selection method in the next 
step of the experiment. 

By using the replacement selection, the RCGA can maintain 
the population diversity and explore the search space better. It 
is indicated by its significantly higher number of iterations to 
obtain the best solution. In contrast, the other selection 
methods achieve their convergence faster which may indicate 
that they are trapped in local optimum areas and cannot obtain 
a better solution. Figure 2 depicts a one run from each 
selection method. It shows the improvement of the best fitness 
value along generations. While all other selection methods 
achieve their convergence in less than 2000 generations, the 
replacement selection gradually improve its chromosomes to 
obtain higher fitness value. 

The second step in our experiment is determining the most 
suitable crossover rate and mutation rate for the RCGA. 
Appropriate crossover rate and mutation rate will help the 
RCGA to balance its exploration and exploitation ability and 
avoid the premature convergence [28]. In order to get a fair 
result, we vary the crossover rate (cr) from 0 to 0.4 and set the 
mutation rate (mr) in such way that cr+mr=0.4. Here, all runs 
produce 0.4x1000 offspring in each generation. Again, we run 
the RCGA 10 times using problem 7.  

 
 

 
Fig. 1 The best fitness value for each selection method 

 

 
Fig. 2 Fitness values for various crossover rates 

 
The result is presented in Table 4 and Figure 2. Apparently, 

the best result is produced by using crossover rate of 0.3 and 
mutation rate of 0.1. Here, by using a low value of crossover 
rate the RCGA will greatly depend on its mutation rate and 
tend acting as a random search method. In other hand, the 
RCGA will lose its ability to maintain population diversity if 
using a high crossover rate and a low mutation rate. Inability to 
maintain population diversity means that the RCGA cannot 
explore the search space effectively and will likely be trapped 
in local optimum area. 

After determining the most suitable crossover rate and 
mutation rate for the RCGA, we run the RCGA for all test-bed 
problems. To measure the performance of the RCGA we use 
frequency of achieving optimum solution (FOS) and deviation 
of objective values resulted by GA to its optimum values. The 
optimum solutions are obtained by using branch-and-bound 
method. It is should be noted that branch-and-bound method 
required computational time more than 10 hours to solve 
particular test bed problems which cannot be accepted on daily 
operation of the FMS. Equation (1) shows the deviation of 
average fitness values from 20 runs of GA to optimum fitness 
value. Fopt is fitness value obtained by branch-and-bound 
method. FGAr is fitness value obtained by GA in run r. 

 

( )( )
%100

20
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1 ×
−

= ∑ =
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dev F
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TABLE IV 
COMPARISON AMONG CROSSOVER RATES 

crossover rate mutation rate 
average of 

fitness value 

0.00 0.40 2.377 

0.05 0.35 2.376 

0.10 0.30 2.392 

0.15 0.25 2.388 

0.20 0.20 2.393 

0.25 0.15 2.384 

0.30 0.10 2.400 

0.35 0.05 2.366 

0.40 0.00 2.294 

 

TABLE III 
COMPARISON AMONG SELECTION METHODS 

selection Fmin Fmax Favg time 
itr 

best 

roulette wheel 2.1264 2.3104 2.1875 58.5 3593 

binary tournament 2.2250 2.4175 2.3488 24.7 1980 

elitist 2.1962 2.4101 2.3344 26.7 1284 

replacement 2.3331 2.4178 2.3659 38.9 7181 
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The computational results are presented in Table 5. Column 
‘time’ shows average of computation time (seconds) from 20 
runs of the RCGA. Columns ‘F’, ‘TH’ and ‘SU’ below column 
‘RCGA’ show the average of fitness value, throughput and 
system unbalance obtained from 20 runs of the RCGA. 

Apparently for a small number of part types (8 and 10), the 
proposed real coded GA could achieve optimum solution in all 
runs (problems 1 to 4). These results are obtained in less than 
7 seconds. In the medium size problems (problems 5 to 8), the 
best result is obtained in problem 8 with Fdev of 0.51% and the 
worst solution is occurred in problem 6 with Fdev of 1.59%. 
Except for problem 7, the RCGA could produce optimum 
solutions in more than 10 runs for all problems. 

The RCGA also obtains optimum solutions in several runs 
in the large size problems (problems 9, 10, and 12), the best 
result is obtained in problem 10 with Fdev of 0.34% and the 
worst solution is occurred in problem 9 with Fdev of 3.79%. 
Overall, in larger problems, Fdev values tend to increase as the 
search space becomes very wide. Increasing the population 
size, crossover rate and mutation rate will reduce Fdev values 
but the computation time will rise. 

It should be noted that lower throughputs achieved by the 
RCGA is compensated by better (lower) system unbalances on 
problems 5, 7 and 10. All Fdev values are below 4% which may 
be regarded as good results considering these results are 
achieved in average of 35.25 seconds. 

Note that these promising results are achieved by using only 
simple genetic operators. The novel proposed chromosome 
representation produces feasible solutions which minimize a 
computational time needed by GA to explore the feasible 
search space efficiently [29][30]. Other approaches may 
require sophisticated strategies to achieve good results which 
may require excessive computation time such as hybridizing 
tabu search with simulated annealing [17], hybridizing genetic 
algorithm with simulated annealing [25]-[26] and equipping 
particle swarm optimization with local search methods [7]. 

IV.  CONCLUSION 

The part type selection and loading problem with 
flexibilities of operations have been modeled in this paper. 
These NP-hard problems were solved by using real coded GA. 
Combination of proper representation and simple genetic 
operators could produce promising results in reasonable 
amount of time. By using 12 test bed problems, the proposed 
RCGA improves the FMS performance by considering two 
objectives, maximizing system throughput and maintaining the 
balance of the system (minimizing system unbalance). The 
resulted objective values are compared to the optimum values 
produced by branch-and-bound method. The experiments 
show that the proposed RCGA could reach near optimum 
solutions in reasonable amount of time. 

Further work will address more complex problem which 
considers alternative production plans which refer to 
possibility of producing part on alternative operation 
sequence. Resource allocation problem which refers to 
allocation of limited number of pallets and fixtures to the part 
types is also integrated to the existing problems. Therefore, a 
more powerful of GA is required.  

Hybridizing the RCGA with other heuristics methods and 
developing new crossover and mutation methods will be 
considered. 
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