Search results for: Piecewise linear inputs
1943 Straightness Error Compensation Servo-system for Single-axis Linear Motor Stage
Authors: M. S. Kang, D. H. Kim, J. S. Yoon, B. S. Park, J. K. Lee
Abstract:
Since straightness error of linear motor stage is hardly dependent upon machining accuracy and assembling accuracy, there is limit on maximum realizable accuracy. To cope with this limitation, this paper proposed a servo system to compensate straightness error of a linear motor stage. The servo system is mounted on the slider of the linear motor stage and moves in the direction of the straightness error so as to compensate the error. From position dependency and repeatability of the straightness error of the slider, a feedforward compensation control is applied to the platform servo control. In the consideration of required fine positioning accuracy, a platform driven by an electro-magnetic actuator is suggested and a sliding mode control was applied. The effectiveness of the sliding mode control was verified along with some experimental results.Keywords: Linear Motor Stage, Straightness Error, Friction, Sliding Mode Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361942 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10031941 Development of Rock Engineering System-Based Models for Tunneling Progress Analysis and Evaluation: Case Study of Tailrace Tunnel of Azad Power Plant Project
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Tunneling progress is a key parameter in the blasting method of tunneling. Taking measures to enhance tunneling advance can limit the progress distance without a supporting system, subsequently reducing or eliminating the risk of damage. This paper focuses on modeling tunneling progress using three main groups of parameters (tunneling geometry, blasting pattern, and rock mass specifications) based on the Rock Engineering Systems (RES) methodology. In the proposed models, four main effective parameters on tunneling progress are considered as inputs (RMR, Q-system, Specific charge of blasting, Area), with progress as the output. Data from 86 blasts conducted at the tailrace tunnel in the Azad Dam, western Iran, were used to evaluate the progress value for each blast. The results indicated that, for the 86 blasts, the progress of the estimated model aligns mostly with the measured progress. This paper presents a method for building the interaction matrix (statistical base) of the RES model. Additionally, a comparison was made between the results of the new RES-based model and a Multi-Linear Regression (MLR) analysis model. In the RES-based model, the effective parameters are RMR (35.62%), Q (28.6%), q (specific charge of blasting) (20.35%), and A (15.42%), respectively, whereas for MLR analysis, the main parameters are RMR, Q (system), q, and A. These findings confirm the superior performance of the RES-based model over the other proposed models.
Keywords: Rock Engineering Systems, tunneling progress, Multi Linear Regression, Specific charge of blasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431940 Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine
Authors: W. R. Li, J. K. Xia, R. Q. Peng, Z. Y. Guo, L. Jiang
Abstract:
According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine.
Keywords: Transverse flux PM linear machine, flux distribution, axial end flux leakage, detent force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15621939 Clustering Protein Sequences with Tailored General Regression Model Technique
Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma
Abstract:
Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671938 Orthogonal Functions Approach to LQG Control
Authors: B. M. Mohan, Sanjeeb Kumar Kar
Abstract:
In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.
Keywords: Linear quadratic Gaussian control, linear quadratic estimator, linear quadratic regulator, time-invariant systems, orthogonal functions, block-pulse functions, shifted legendre polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601937 The New Relative Efficiency Based on the Least Eigenvalue in Generalized Linear Model
Authors: Chao Yuan, Bao Guang Tian
Abstract:
A new relative efficiency is defined as LSE and BLUE in the generalized linear model. The relative efficiency is based on the ratio of the least eigenvalues. In this paper, we discuss about its lower bound and the relationship between it and generalized relative coefficient. Finally, this paper proves that the new estimation is better under Stein function and special condition in some degree.Keywords: Generalized linear model, generalized relative coefficient, least eigenvalue, relative efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11891936 On General Stability for Switched Positive Linear Systems with Bounded Time-varying Delays
Authors: Xiu Liu, Shouming Zhong, Xiuyong Ding
Abstract:
This paper focuses on the problem of a common linear copositive Lyapunov function(CLCLF) existence for discrete-time switched positive linear systems(SPLSs) with bounded time-varying delays. In particular, applying system matrices, a special class of matrices are constructed in an appropriate manner. Our results reveal that the existence of a common copositive Lyapunov function can be related to the Schur stability of such matrices. A simple example is provided to illustrate the implication of our results.
Keywords: Common linear co-positive Lyapunov functions, positive systems, switched systems, delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481935 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33331934 Periodic Control of a Reverse Osmosis Water Desalination Unit
Authors: Ali Emad
Abstract:
Enhancement of the performance of a reverse osmosis (RO) unit through periodic control is studied. The periodic control manipulates the feed pressure and flow rate of the RO unit. To ensure the periodic behavior of the inputs, the manipulated variables (MV) are transformed into the form of sinusoidal functions. In this case, the amplitude and period of the sinusoidal functions become the surrogate MV and are thus regulated via nonlinear model predictive control algorithm. The simulation results indicated that the control system can generate cyclic inputs necessary to enhance the closedloop performance in the sense of increasing the permeate production and lowering the salt concentration. The proposed control system can attain its objective with arbitrary set point for the controlled outputs. Successful results were also obtained in the presence of modeling errors.Keywords: Reverse osmosis, water desalination, periodic control, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22471933 Parallel Multisplitting Methods for Singular Linear Systems
Authors: Guangbin Wang, Fuping Tan
Abstract:
In this paper, we discuss convergence of the extrapolated iterative methods for linear systems with the coefficient matrices are singular H-matrices. And we present the sufficient and necessary conditions for convergence of the extrapolated iterative methods. Moreover, we apply the results to the GMAOR methods. Finally, we give one numerical example.
Keywords: Singular H-matrix, linear systems, extrapolated iterative method, GMAOR method, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13521932 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.
Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901931 Surface Flattening based on Linear-Elastic Finite Element Method
Authors: Wen-liang Chen, Peng Wei, Yidong Bao
Abstract:
This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.
Keywords: Triangular mesh, surface flattening, finite elementmethod, linear-elastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31631930 A Proposed Performance Prediction Approach for Manufacturing Processes using ANNs
Authors: M. S. Abdelwahed, M. A. El-Baz, T. T. El-Midany
Abstract:
this paper aims to provide an approach to predict the performance of the product produced after multi-stages of manufacturing processes, as well as the assembly. Such approach aims to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. The approach is guided by a six-sigma methodology to obtain improved performance. In this paper a case study of the manufacture of a hermetic reciprocating compressor is presented. The application of artificial neural networks (ANNs) technique is introduced to improve performance prediction within this manufacturing environment. The results demonstrate that the approach predicts accurately and effectively.Keywords: Artificial neural networks, Reciprocating compressor manufacturing, Performance prediction, Quality improvement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821929 Stability of Discrete Linear Systems with Periodic Coefficients under Parametric Perturbations
Authors: Adam Czornik, Aleksander Nawrat
Abstract:
This paper studies the problem of exponential stability of perturbed discrete linear systems with periodic coefficients. Assuming that the unperturbed system is exponentially stable we obtain conditions on the perturbations under which the perturbed system is exponentially stable.Keywords: Exponential stability, time-varying linear systems, periodic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061928 Simulating Action Potential as a Linear Combination of Gating Dynamics
Authors: S. H. Sabzpoushan
Abstract:
In this research we show that the dynamics of an action potential in a cell can be modeled with a linear combination of the dynamics of the gating state variables. It is shown that the modeling error is negligible. Our findings can be used for simplifying cell models and reduction of computational burden i.e. it is useful for simulating action potential propagation in large scale computations like tissue modeling. We have verified our finding with the use of several cell models.
Keywords: Linear model, Action potential, gating dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12751927 Linear Pocket Profile based Threshold Voltage Model for sub-100 nm n-MOSFET
Authors: Muhibul Haque Bhuyan, Quazi Deen Mohd Khosru
Abstract:
This paper presents a threshold voltage model of pocket implanted sub-100 nm n-MOSFETs incorporating the drain and substrate bias effects using two linear pocket profiles. Two linear equations are used to simulate the pocket profiles along the channel at the surface from the source and drain edges towards the center of the n-MOSFET. Then the effective doping concentration is derived and is used in the threshold voltage equation that is obtained by solving the Poisson-s equation in the depletion region at the surface. Simulated threshold voltages for various gate lengths fit well with the experimental data already published in the literature. The simulated result is compared with the two other pocket profiles used to derive the threshold voltage models of n-MOSFETs. The comparison shows that the linear model has a simple compact form that can be utilized to study and characterize the pocket implanted advanced ULSI devices.
Keywords: Linear pocket profile, pocket implantation, nMOSFET, threshold voltage, short channel effect (SCE), reverse short channeleffect (RSCE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011926 Optimal Control of a Linear Distributed Parameter System via Shifted Legendre Polynomials
Authors: Sanjeeb Kumar Kar
Abstract:
The optimal control problem of a linear distributed parameter system is studied via shifted Legendre polynomials (SLPs) in this paper. The partial differential equation, representing the linear distributed parameter system, is decomposed into an n - set of ordinary differential equations, the optimal control problem is transformed into a two-point boundary value problem, and the twopoint boundary value problem is reduced to an initial value problem by using SLPs. A recursive algorithm for evaluating optimal control input and output trajectory is developed. The proposed algorithm is computationally simple. An illustrative example is given to show the simplicity of the proposed approach.Keywords: Optimal control, linear systems, distributed parametersystems, Legendre polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121925 Realization of Design Features for Linear Flow Splitting in NX 6
Authors: Anselm L. Schüle, Thomas Rollmann, Reiner Anderl
Abstract:
Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.Keywords: Linear Flow Splitting, CRC 666, User Defined Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24821924 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System
Authors: Soltani Amir, Wang Xuan
Abstract:
The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A MATLAB program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.
Keywords: Structural Control, Active and passive damping, Vibration control, Seismic isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24081923 Linear Elasticity Problems Solved by Using the Fictitious Domain Method and Total - FETI Domain Decomposition
Authors: Lukas Mocek, Alexandros Markopoulos
Abstract:
The main goal of this paper is to show a possibility, how to solve numerically elliptic boundary value problems arising in 2D linear elasticity by using the fictitious domain method (FDM) and the Total-FETI domain decomposition method. We briefly mention the theoretical background of these methods and demonstrate their performance on a benchmark.
Keywords: Linear elasticity, fictitious domain method, Total-FETI, domain decomposition, saddle-point system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821922 An Optimized Method for Calculating the Linear and Nonlinear Response of SDOF System Subjected to an Arbitrary Base Excitation
Authors: Hossein Kabir, Mojtaba Sadeghi
Abstract:
Finding the linear and nonlinear responses of a typical single-degree-of-freedom system (SDOF) is always being regarded as a time-consuming process. This study attempts to provide modifications in the renowned Newmark method in order to make it more time efficient than it used to be and make it more accurate by modifying the system in its own non-linear state. The efficacy of the presented method is demonstrated by assigning three base excitations such as Tabas 1978, El Centro 1940, and MEXICO CITY/SCT 1985 earthquakes to a SDOF system, that is, SDOF, to compute the strength reduction factor, yield pseudo acceleration, and ductility factor.
Keywords: Single-degree-of-freedom system, linear acceleration method, nonlinear excited system, equivalent displacement method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11061921 Preconditioned Jacobi Method for Fuzzy Linear Systems
Authors: Lina Yan, Shiheng Wang, Ke Wang
Abstract:
A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.
Keywords: preconditioning, M-matrix, Jacobi method, fuzzy linear system (FLS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041920 Research on the Problems of Housing Prices in Qingdao from a Macro Perspective
Authors: Liu Zhiyuan, Sun Zongdi, Liu Zhiyuan, Sun Zongdi
Abstract:
Qingdao is a seaside city. Taking into account the characteristics of Qingdao, this article established a multiple linear regression model to analyze the impact of macroeconomic factors on housing prices. We used stepwise regression method to make multiple linear regression analysis, and made statistical analysis of F test values and T test values. According to the analysis results, the model is continuously optimized. Finally, this article obtained the multiple linear regression equation and the influencing factors, and the reliability of the model was verified by F test and T test.
Keywords: Housing prices, multiple linear regression model, macroeconomic factors, Qingdao City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11791919 Nonlinear Modeling of the PEMFC Based On NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear identification, NNARX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22001918 A Contractor for the Symmetric Solution Set
Authors: Milan Hladik
Abstract:
The symmetric solution set Σ sym is the set of all solutions to the linear systems Ax = b, where A is symmetric and lies between some given bounds A and A, and b lies between b and b. We present a contractor for Σ sym, which is an iterative method that starts with some initial enclosure of Σ sym (by means of a cartesian product of intervals) and sequentially makes the enclosure tighter. Our contractor is based on polyhedral approximation and solving a series of linear programs. Even though it does not converge to the optimal bounds in general, it may significantly reduce the overestimation. The efficiency is discussed by a number of numerical experiments.
Keywords: Linear interval systems, solution set, interval matrix, symmetric matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12871917 TS Fuzzy Controller to Stochastic Systems
Authors: Joabe Silva, Ginalber Serra
Abstract:
This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.Keywords: Fuzzy Systems; Robust Stability, Stochastic Control, Stochastic Process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991916 An Adaptive Fuzzy Clustering Approach for the Network Management
Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani
Abstract:
The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.
Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841915 Wavelet Based Identification of Second Order Linear System
Authors: Sudipta Majumdar, Harish Parthasarathy
Abstract:
In this paper, a wavelet based method is proposed to identify the constant coefficients of a second order linear system and is compared with the least squares method. The proposed method shows improved accuracy of parameter estimation as compared to the least squares method. Additionally, it has the advantage of smaller data requirement and storage requirement as compared to the least squares method.Keywords: Least squares method, linear system, system identification, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771914 Sensitivity of Input Blocking Capacitor on Output Voltage and Current of a PV Inverter Employing IGBTs
Authors: Z.A. Jaffery, Vinay Kumar Chandna, Sunil Kumar Chaudhary
Abstract:
This paper present a MATLAB-SIMULINK model of a single phase 2.5 KVA, 240V RMS controlled PV VSI (Photovoltaic Voltage Source Inverter) inverter using IGBTs (Insulated Gate Bipolar Transistor). The behavior of output voltage, output current, and the total harmonic distortion (THD), with the variation in input dc blocking capacitor (Cdc), for linear and non-linear load has been analyzed. The values of Cdc as suggested by the other authors in their papers are not clearly defined and it poses difficulty in selecting the proper value. As the dc power stored in Cdc, (generally placed parallel with battery) is used as input to the VSI inverter. The simulation results shows the variation in the output voltage and current with different values of Cdc for linear and non-linear load connected at the output side of PV VSI inverter and suggest the selection of suitable value of Cdc.
Keywords: DC Blocking capacitor, IGBTs, PV VSI, THD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131