Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30302
Nonlinear Modeling of the PEMFC Based On NNARX Approach

Authors: Shan-Jen Cheng, Kuang-Hsiung Tan, Te-Jen Chang, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: Neural Network, PEMFC, NNARX, nonlinear identification

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1105835

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747

References:


[1] J. Jia, G. Wang, Y. T. Cham, Y. Wang, and M. Han, “Electrical characteristic study of a hybrid PEMFC and ultracapacitor system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1945–1953, Jun. 2010.
[2] K. Jin, X. Ruan, M. Yang, and M. Xu, “A hybrid fuel cell power system,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1212–1222, Apr. 2009.
[3] X. D. Wang, Y. Y. Duan, W. M. Yan and X. F. Peng, “Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs.” J Power Sources, vol. 175, pp. 397–407, 2008.
[4] T. Berning and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study,” J Power Sources, vol. 124, pp. 440-452, 2003.
[5] A. K. Swain, S. A. Billings, P. K. Stansby and M. Baker, “Accurate prediction of nonlinear wave forces: part Ι fixed cylinder,” Mechanical system and signal processing, vol. 12, pp.449-485, 1998.
[6] J. Yan, B. Li, H. F. Ling, H. S. Chen, and M. J. Zhang, “Nonlinear State Space Modeling and System Identification for Electrohydraulic Control,” Mathematical Problems in Engineering, vol. 2013, pp.1-9, 2013.
[7] L. Ljung and T. Glad. Modeling of dynamic systems. New Jersey; PTR Prentice-Hall, Inc., 1994.
[8] K. Narenda and K. Parthasarathy, “Identification and control of dynamical system using neural network,” IEEE Transaction on Neural network, vol.1 pp4-27, 1990.
[9] S. Haykin, Neural Networks, Second Edition, Pearson Education, 1999.
[10] T. Lin, C. L. Giles, G. B. Horne and S. Y. Kung, “A Delay Damage Model Selection Algorithm for NARX Neural Networks,” IEEE, Transactions on Signal Processing, “Special Issue on Neural Networks”, vol. 45, No. 11, pp. 2719-2730, 1997.
[11] H. T. Siegelmann, B. G. Horne and C. L. Giles, “Computational capabilities of recurrent NARX neural networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 27, No. 2, pp.208-215J, 1997.
[12] M. Basso, L. Giarre, S. Groppi and G. Zappa, “NARX models of an industrial power plant gas turbine,” IEEE Transaction on Control systems Technology, vol.13, pp.599-604, 2005.
[13] I. A. Miao, I. S. Stievano and E. G. Canavero, “NARX approach to black-box modeling of circuit elements,” in Proc. IEEE International Symposium on Circuits and Systems, pp.411-414, 1998.
[14] H. B. Demuth and M. Beale, Users Guide for the Neural Network Toolbox for Matlab, The Mathworks, Natica, MA, 1998.
[15] S. J. Cheng, J. J Liu. Nonlinear modeling and identification of proton exchange membrane fuel cell (PEMFC). Accepted in press, International Journal of Hydrogen Energy, 2015.