**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30184

##### Optimal Control of a Linear Distributed Parameter System via Shifted Legendre Polynomials

**Authors:**
Sanjeeb Kumar Kar

**Abstract:**

**Keywords:**
Optimal control,
linear systems,
distributed parametersystems,
Legendre polynomials.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1061104

**References:**

[1] Sage, A. P. and White III, C .C., Optimal Systems Control, Englewood cliffs, NJ: Prentice Hall, 1977.

[2] Mahapatra, G. B., Solution of optimal control problem of linear diffusion equations via Walsh functions, IEEE Trans. on Automatic Control, Vol. 25, No. 2, pp: 319-321, 1980.

[3] Wang, M. L. and Chang, R. Y., Optimal control of linear distributed parameter systems by shifted Legendre polynomial functions, Trans. of ASME J. of Dynamic Systems, Measurement, and Control, Vol. 105, pp: 222-226, 1983.

[4] Horng, I. R. and Chou, J. H., Application of shifted Chebyshev series to the optimal control of linear distributed parameter systems, Int. J. of Control, Vol. 42, No. 1, pp: 233-241, 1985.

[5] Chang, R. Y. and Yang, S. Y., Solution of two-point boundary value problems by generalized orthogonal polynomials and application to optimal control of lumped and distributed parameter systems, Int. J. of Control, Vol. 43, No. 6, pp: 1785-1802, 1986.

[6] Zhu, J. M. and Lu, Y. Z., Application of single step method of block-pulse functions to the optimal control of linear distributed parameter systems, Int. J. of Systems Sci., Vol. 19, No. 12, pp: 2459-2472, 1988.

[7] Datta, K. B. and Mohan, B. M., Orthogonal Functions in Systems and Control, Singapore: World Scientific, 1995.

[8] Razzaghi, M. and Habibi, M., Application of Legendre series to the control problems governed by linear parabolic equations, Mathematics and Computers in Simulation, Vol. 42, pp: 77-84, 1996.

[9] Sadek, I. S. and Bokhari, M. A., Optimal control of a parabolic distributed parameter system via orthogonal functions, Optimal Control Applications and Methods, Vol. 19, pp: 205-213, 1998.