
Accelerating Quantum Chemistry Calculations:
Machine Learning for Efficient Evaluation of

Electron-Repulsion Integrals
Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract—A crucial objective in quantum chemistry is the
computation of the energy levels of chemical systems. This
task requires electron-repulsion integrals as inputs and the steep
computational cost of evaluating these integrals poses a major
numerical challenge in efficient implementation of quantum chemical
software. This work presents a moment-based machine learning
approach for the efficient evaluation of electron-repulsion integrals.
These integrals were approximated using linear combinations of a
small number of moments. Machine learning algorithms were applied
to estimate the coefficients in the linear combination. A random forest
approach was used to identify promising features using a recursive
feature elimination approach, which performed best for learning the
sign of each coefficient, but not the magnitude. A neural network with
two hidden layers was then used to learn the coefficient magnitudes,
along with an iterative feature masking approach to perform input
vector compression, identifying a small subset of orbitals whose
coefficients are sufficient for the quantum state energy computation.
Finally, a small ensemble of neural networks (with a median rule for
decision fusion) was shown to improve results when compared to a
single network.

Keywords—Quantum energy calculations, atomic orbitals,
electron-repulsion integrals, ensemble machine learning, random
forests, neural networks, feature extraction.

I. INTRODUCTION

CALCULATION of the energy of a quantum state

is essential in quantum chemistry computations,

e.g., in designing new materials for photonic quantum

computers. 1-particle and 2-particle density matrices are

the main components of tensors used to describe the

Hamiltonian whose expectation value is the average energy,

including information about inter-particle interactions in the

chemical system. However, their computations are extremely

computationally intensive, a problem addressed here by a

two-pronged approach:

(1) An analytical moment-based formulation, along with an

approximation as a linear combination of a small number of

moments; and

(2) The application of machine learning algorithms to perform

feature extraction and estimation of various coefficients in the

linear combination.

Both of these are the first research efforts in this direction,

and are expected to help achieve breakthroughs in applications
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such as photonic quantum material design.
Section II provides the quantum chemistry background

relevant to this work. Section III describes the finite linear

combination approach, data, and metrics used for evaluation.

Section IV describes the application of a random forest

learning approach to identify a small set of features sufficient

for predicting the signs of the coefficients in the linear

combination. Section V describes the use of neural networks

to identify features and estimate various coefficients (signs and

magnitudes), as well as an ensemble of neural networks that

provides a better and more stable estimation of coefficients.

Finally, Section VI summarizes the work, and discusses

directions for future work.

II. BACKGROUND

The average energy of a quantum state Ψ is the expectation

value of the Hamiltonian H which can be expressed in the

form of contractions of 2-index and 4-index tensors:

Eavg[Ψ] = 〈Ψ|H|Ψ〉 (1)

〈Ψ|H|Ψ〉 =
∑
pq

H0
pq D1 pq +

1

2

∑
pqrs

Vpqrs D2 pqrs (2)

where D1 pq and D2 pqrs are 1-particle and 2-particle density
matrices obtained from the quantum state Ψ. The matrices

H0 and V are obtained from the Hamiltonian operator H
and contain information about the inter-particle interactions

in the chemical system. The Hamiltonian H plays a central

role in both the time-independent (3) and time-dependent (4)

Schrödinger equations, which are indispensable for quantum

chemical calculations.

HΨn = EnΨn (3)

ih̄
dΨ

dt
= HΨ (4)

The tensor elements Vpqrs are known as electron-repulsion

integrals (ERI) and are important quantities in the fields

of quantum chemistry and many-body condensed matter

physics. The principal computational challenge in performing

quantum mechanical calculations on large chemical systems

is in the construction of the 4-index, V, tensor. [1] Many

different strategies such as singular-value decomposition, [1]

density-fitting, [2] and Cholesky decomposition [3] have been

used to reduce the computation cost for the construction of V
tensors.
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A. Moments Approach
This section presents a machine learning accelerated

approach for efficient construction of the Hamiltonian by

developing a moment-based formulation for construction of

the electron-repulsion integral tensor, the details of which are

presented below.
A set of NMO ortho-normal molecular orbitals {ψp} are

defined below and∫ +∞

−∞
drψp(r)ψq(r) = δpq (5)

r is the three-dimensional Cartesian vector. The two-electron

integral is defined as follows, using V, a 4-index tensor of

size N4
MO; note that r12 = ‖r1 − r2‖ refers to the distance

between the two electrons.

Vpqrs =

∫ +∞

−∞
dr1dr2 ψp(r1)ψq(r1)r

−1
12 ψr(r2)ψs(r2) (6)

In the LCAO-MO representation, each molecular orbital is

expressed as a linear combination of atomic orbitals:

ψp(r) =

NAO∑
μ=1

Cμpφp(r) (7)

Jμνλσ =

∫ +∞

−∞
dr1dr2 φμ(r1)φν(r1)r

−1
12 φλ(r2)φσ(r2) (8)

J is a 4-index tensor of size N4
AO. Table I illustrates the

large sizes of different chemical systems used in quantum dot

materials.

TABLE I
SIZES OF CHEMICAL SYSTEMS

Chemical System NMO N4
MO

Quantum
dot diameter

(nm)

Cd6S6 168 7.97× 108 0.76

Cd24S24 672 2.04× 1011 1.27

Cd45S45 1260 2.52× 1012 1.50

Cd3Se3 84 4.98× 107 0.50

Cd24Se24 672 2.04× 1011 1.32

Cd54Se54 1512 5.23× 1012 1.79

Pb4Se4 64 1.68× 107 0.68

Pb29Se29 464 4.64× 1010 1.40

Pb52Se52 832 4.79× 1011 1.59

Pb4S4 64 1.68× 107 0.51

Pb44S44 704 2.46× 1011 1.54

Pb140S140 2000 1.60× 1013 2.28

The atomic orbitals are expressed as a linear combination

of Gaussian functions, and the integrals needed for the

construction of J are obtained analytically. After the

construction of J, the construction of V is accomplished using

the following tensor contraction.

V = Tr[CCCJ] (9)

Therefore, each tensor element Vpqrs can be expressed using

(10) given below.

Vpqrs =

NAO∑
μ=1

NAO∑
ν=1

NAO∑
λ=1

NAO∑
σ=1

CμpCνqCλrCσsJμνλσ (10)

The use of moments is inspired by the mathematical

connection between the ERI and multipole expansion [4]

for the electron-electron interaction kernel. In Cartesian

coordinates the, multipole expansion of r−1
12 results in the

following polynomial in x1, y1, z1, x2, y2, z2:

r−1
12 =

∞∑
n=0

∞∑
m=0

Cnmxnx
1 y

ny

1 ynz
1 xmx

2 y
my

2 ymz
2 (11)

where n = [nx, ny, nz] and m = [mx,my,mz] are sets of

integer powers in the above expansion and C is the vector

of expansion coefficients. Substituting (11) into (6), the exact

expression of Vpqrs is obtained in terms of the moments:

Vpqrs =
∞∑

n=0

∞∑
m=0

CnmMpq(n)Mrs(m) (12)

where, for n ≥ 0, the moments along each axis are:

Mpq,n,x =

∫ +∞

−∞
drψp(r)x

nψq(r) (13)

Mpq,n,y =

∫ +∞

−∞
drψp(r)y

nψq(r) (14)

Mpq,n,z =

∫ +∞

−∞
drψp(r)z

nψq(r) (15)

III. METHOD

This section describes the proposed finite approximation

approach, followed by data and metrics.

A. Finite Approximation Approach

The result in (12) illustrates the exact map between M
and V. To reduce the amount of computation required,

two important approximations are proposed here. First, the

infinite summation over all moments is approximated by a

finite summation to a maximum moment of Nmom. Second,

the analytically determined Cnm expansion coefficients are

replaced by numerically estimated Ĉnm coefficients, obtained

as a result of training machine learning models.

V̂pqrs =

Nmom∑
n=0

Nmom∑
m=0

ĈnmMpq(n)Mrs(m) (16)

The loss function is defined as,

f̂pqrs = [Vpqrs − V̂pqrs]
2 (17)

to be minimized by training with machine learning algorithms.

It is emphasized that the results obtainable can be steadily

improved by increasing Nmom, i.e., the number of terms in

the finite linear combination; the loss function decreases to

zero in the limit of taking infinitely many moments, i.e.,

lim
n→∞ f̂pqrs = 0 (18)
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B. Datasets

Each input vector (for our machine learning algorithms)

was constructed from a set of Mpq and Mrs moments with

Nmom = 2. This resulted in three sets of moments with

n = 0, 1, 2 for each Cartesian coordinate (x, y, z), which

results in 33 = 27 moments. The moments were generated

for both pq and rs pair which results in the total size of

the input vector to be equal to 27 × 2 = 54. The spatial

orbitals were represented by Gaussian-type orbitals (GTO) and

the training dataset for the machine learning algorithms was

generated stochastically, by randomly generating four GTOs

and evaluating Vpqrs, Mpq , and Mrs. The GTOs have been

used successfully in quantum chemical calculations and is has

been demonstrated to yield accurate energies and chemical

properties. [5]–[7]

The GTO integrals API1 implements the overlap and

moments using 1-electron and 2-electron integrals involving

Gaussian-type orbitals. The data generated are stochastic in

nature and sampled from a Gaussian distribution. Each row

of data contains information about the Gaussian-type orbitals

that correspond to 54 features and an interaction term. Using

the stochastic API interface, multiple datasets were generated,

varying the number of rows (data points), as in Table II.

TABLE II
SAMPLES PER DATASET

Size Label Number of data points (Rows)
Mini 10,000
Mega 1,000,000

Magna 10,000,000

The Mini sets were used for data analysis and developing

tree-based approaches, and the Mega sets were used to train

neural networks. The Magna sets were used for testing and

validating the trained models.

C. Metrics

The problem is formulated in terms of two separate

objectives: predicting the magnitude (strength) of each force,

and its sign (attractive vs. repulsive).

To determine the performance of the model in terms of

the magnitude of the predicted value, the Mean Absolute

Error and the R2 score are used. The Mean Absolute Error

(MAE) is computed as the mean of the absolute difference

between the actual and predicted value. The R2 score is the

coefficient of determination that quantifies the predictability

of the dependent variable from the independent variable.

Separately, a binary accuracy function compares just the

sign of the predicted and actual values.

Binary Accuracy =

∑
i sign(yiŷi)

n
(19)

where sign(x) =

{
0 if x < 0

+1 if x ≥ 0
(20)

1This API was developed by the authors, and will be made publicly
available, and integrated with JuliaChem libraries.

This binary accuracy value is important since the sign

determines the type of interaction. Learning whether the force

is attractive or repulsive is considerably more significant than

errors in magnitude of the force (emphasized by MAE).

IV. RANDOM FOREST MODELS FOR SIGN PREDICTION

Random forest models [8] were used to help analyze

the complexity of the problem and determine a baseline

solution. The model is trained on the mini dataset (10,000

rows); the use of larger data sets did not improve model

performance, but increased the training time substantially. A

10-fold cross-validation strategy is implemented to validate the

performance of the random forest model.

Fig. 1 Training and Cross-Validation R2 score versus the number of
samples in the training set

The learning curve in Fig. 1 shows that the trained model

over-fits the data; and that no performance improvement is

obtained by using more than 9000 training samples. The

validation performance is much worse than the training

performance even after training with a large number of

samples. The training time increased with the number of

training samples, as shown in Fig. 2, without resulting in a

performance gain.

Fig. 2 Random-Forest; time to fit versus the number of samples in the
training set

These results imply that the problem is complex and the

tree-based models are unable to generate a viable solution

for the regression problem. It may also be inferred that the
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training feature data are noisy, obscuring the useful ”signal”

information in the data.

The trained random forest model can also be used to

generate a feature importance score that ranks the features

based on their impact on decision making. Noisy features have

little impact on the predicted value (low feature importance

scores) and can be dropped.

Several possible feature selection strategies exist; the

simplest one is to just drop the feature with the lowest feature

importance score (noisy features). This method is a quick

and easy way to reduce model size, but does not account

for the non-linear dependencies between the various features.

Additionally, it is difficult to determine the number of features

to keep/drop as the feature importance score is not comparable

to the actual model performance.

Recursive feature elimination [9] overcomes these

drawbacks, making it a robust strategy, although it is far

more resource-intensive. This approach iteratively trains the

model, dropping the least important feature at the end of each

iteration. Hence the method trains and scores 53 separate

models. The training and validation scores are recorded,

and this helps determine the minimum number of features

required to maximize model performance.

Fig. 3 Cross-Validation score versus the number of features selected using
Recursive Feature Elimination

Fig. 3 depicts how model performance varies with the

number of features. Only 6 features were required to achieve

the maximum R2 score and additional features had negligible

impact on model performance. These 6 features are denoted

by indices (0, 3, 27, 29, 30, 36). The results from the feature

selection strategies are compared in Table III.

TABLE III
RANDOM-FOREST MODEL PERFORMANCE WITH DIFFERENT FEATURE

SELECTION METHODS

Feature set Train R2 score Validation R2 score
All features 0.95250 +/- 0.00252 0.67630 +/- 0.04841

Top 20 features 0.95471 +/- 0.00153 0.69168 +/- 0.04969
Top 10 features 0.95734 +/- 0.00196 0.71462 +/- 0.05441
RFE 6 features 0.95992 +/- 0.00095 0.72516 +/- 0.03802

Recursive feature elimination produces the best validation

score, but overall the random forest model still overfits. The

validation scores are significantly worse than the training

results. This suggests that the problem is too complex

or nonlinear to be addressed satisfactorily using tree-based

models with bounded depth. However, the random forest

model performs very well on the binary accuracy metric, as

shown in Table IV.

TABLE IV
RANDOM-FOREST MODEL PERFORMANCE

Set MAE R2 Score Binary acc.
Train 0.011 0.923 0.997

Validation 0.757 0.757 0.995

V. ESTIMATION USING NEURAL NETWORKS

The capabilities of feedforward neural networks were

explored, and compared with the random forest baseline

results. After examining the performance of shallow neural

networks of various sizes, satisfactory results were obtained

for the estimation problem (described in preceding sections)

using a neural network with two hidden layers; deep networks

were not required for this problem.

A. Single Neural Network Model

The results shown here were obtained with a 54-64-32-1

artificial neural network (Neural Networks are implemented

using the PyTorch [10] and Flux [11] open-source libraries),

i.e., with:

• an input layer of 54 nodes (corresponding to the 54

features, i.e., coefficients in the finite linear combination

expression for atomic orbitals),

• first hidden layer of 64 nodes,

• second hidden layer of 32 nodes, and

• a single node in the output layer.

Each of the input and hidden layers used ReLU activation

functions. Each network is trained on a Mega dataset

(1,000,000 rows) and minimizes the mean absolute error using

the Adam optimizer. Using a 10-fold cross validation strategy,

the network model was demonstrated to achieve an R2 score

of 0.95 on the training and validation set.

When the network inputs were restricted to using only the

set of 6 most important features determined by the recursive

feature elimination method from the random forest model

(mentioned in the previous section), the selected features

improved the binary accuracy score slightly, but had a

significant detrimental impact on the mean absolute error and

R2 scores. This necessitated further feature extraction efforts.

Unlike random forest models, neural network training does

not directly provide any information about feature importance.

The added computational overhead of training neural networks

iteratively makes it difficult to determine the impact of features

using a recursive elimination approach. Furthermore with

a smaller set of input features in each iteration, the size

of the hidden layers needs to be optimized. Due to these

bottlenecks, it is difficult and computationally intensive to

use the Recursive Feature Elimination approach for neural

networks.
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Instead, we used a simple strategy, masking a single feature

during model validation by setting it to 0. This allows us

to calculate the impact of each feature by comparing the

new metrics to the original values. A feature was considered

important for the network if its elimination increases the mean

absolute error more than a small threshold, chosen as 0.001 in

this work. 11 of the 54 features met this threshold, with feature

indices (0, 27, 36, 9, 1, 28, 3, 30, 33, 45, 18). There is a large

overlap between this feature set and the set of features from

Recursive Feature Selection (from the random forest model),

supporting the use of this simpler method for feature selection.

TABLE V
NEURAL NETWORK MODEL PERFORMANCE WITH DIFFERENT FEATURE

SETS

Feature set MAE R2 Score Binary acc.
All features 0.01027 0.950 0.961

RFE 6 features 0.04509 0.349 0.972
Selected 11 features 0.00754 0.968 0.977

These 11 features were considered important for the

estimation problem, and were used to train a new neural

network. The retrained neural network (using the 11 features

identified) outperforms the original network on all metrics, as

shown in Table V. The overall improvement in performance

is also accompanied by efficiency as the smaller network

trains faster and requires fewer computational resources. The

network now has an input layer of 11 nodes (11/54 features),

hidden layer 1 of 64 nodes, hidden layer 2 of 32 nodes

and a single node in the output layer. This change reduces

the number of trainable parameters by almost 50%, with a

substantial reduction in the first hidden layer. However, further

reductions in network size (e.g., by halving the number of

nodes in the hidden layers) worsened performance [12].

B. Ensemble of Neural Networks

Our approach is intended to be used as a scientific tool,

hence it is important to make sure there is no bias accidentally

caused by the randomness in generating data or initial weights

of neural network models. This concern can be addressed by

using an ensemble of neural network models, rather than a

single model. The number of models in the ensemble need

Fig. 4 Training loss curves for an ensemble of 5 neural networks

not be large, since they increase computational effort without

necessarily improving performance.

An ensemble of 5 neural networks was hence used, each

trained independently on a different dataset. Utilizing the

stochastic property of the data generator, five distinct Mega
datasets (1,000,000 rows) were generated. Each of these

datasets was used to train a different neural network with

the same 11-64-32-1 architecture mentioned earlier; results are

shown in Fig. 4.

When predicting a value, predictions from all the 5 neural

networks are aggregated, to provide a more robust estimate

of the actual value. To understand the performance of the

different aggregation strategies, we make use of the ”Magna”

dataset (10,000,000 rows). The mean, median, and standard

deviation were computed for the predictions from the 5 neural

network models.

TABLE VI
VALIDATING PERFORMANCE OF MODEL ENSEMBLE; USING MEAN

AGGREGATION

Validation set MAE R2 Score Binary acc.
Magna 1 0.00691 0.961 0.981
Magna 2 0.00689 0.964 0.977

TABLE VII
VALIDATING PERFORMANCE OF MODEL ENSEMBLE; USING MEDIAN

AGGREGATION

Validation set MAE R2 Score Binary acc.
Magna 1 0.00436 0.978 0.986
Magna 2 0.00436 0.979 0.986

Tables VI and VII show that using the median (for

aggregating results from the five neural networks in the

ensemble) was a little better than using the mean, with a

slight improvement over the single model performance. Thus

the ensemble approach is more robust than using a single

neural network model, and results in improved performance.

The ensemble (using the median) achieves a mean absolute

error of 0.004, R2 score of 0.978, and a binary accuracy of

0.986, over the two ”Magna” datasets.

Using the ensemble approach enables the use of a

user-defined threshold that can be configured, analogous to

other scientific tools. If the 5 neural networks predict almost

identical values, we have higher confidence in their accuracy,

Fig. 5 Threshold analysis using the ensemble of 5 neural networks
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when compared to ensemble predictions with a larger standard

deviation.

Fig. 5 suggests that a threshold value in the range (0.02,

0.04] covers a large portion of the examples while maintaining

a low mean absolute error and a high R2 score. Furthermore,

the threshold can be adjusted based on the type and sensitivity

of the experiment. The samples that fall outside the threshold

can be addressed using the mathematical approach with the

machine learning-based approximation. Using this approach

will be more efficient than the approach currently used, with

considerable savings in computational resources and time

required, despite the simplicity of the machine learning models

proposed in this work.

VI. CONCLUSION

Summarizing, this work has proposed a moments-based

approach for the calculation of electron-repulsion integrals,

with an approximation using a finite linear combination of

moments. A random forest approach successfully reduced

the feature set size significantly (from 54 to 6), and

performed very well for predicting the signs of coefficients

(indicating whether the forces are attractive or repulsive).

A neural network approach resulted in further improvement

in estimating coefficient magnitudes using 2-hidden layer

feedforward models, and a simple feature masking approach

reduced the feature set size from 54 to 11, and considerable

overlap with the 6 features obtained from the random forest

approach was observed. Finally, the best results were obtained

using an ensemble of 5 independently trained neural networks

whose results were combined using a median rule.

The results from this approach will result in a reduction

in the overall computational cost of performing quantum

chemical calculations. In future studies, the new approach will

be used to investigation optical and electronic properties of

large nanoparticles which are currently inaccessible because

of prohibitively high computational cost.
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