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Abstract—Polymer Electrolyte Membrane Fuel Cell (PEMFC) is

such a time-vary nonlinear dynamic system. The traditional linear
modeling approach is hard to estimate structure correctly of PEMFC
system. From this reason, this paper presents a nonlinear modeling of
the PEMFC using Neural Network Auto-regressive model with
eXogenous inputs (NNARX) approach. The multilayer perception
(MLP) network is applied to evaluate the structure of the NNARX
model of PEMFC. The validity and accuracy of NNARX model are
tested by one step ahead relating output voltage to input current from
measured experimental of PEMFC. The results show that the obtained
nonlinear NNARX model can efficiently approximate the dynamic
mode of the PEMFC and model output and system measured output
consistently.

Keywords—PEMFC, neural network, nonlinear identification,
NNARX.

I. INTRODUCTION

UEL CELL (FC) technologies development and
commercialization motivation is concerned with increasing

environment and resource issues. Polymer Electrolyte
Membrane Fuel Cell (PEMFC), as a renewable energy source,
is one of the most promising fuel cells due to their compact
modular, high efficiently and good stability. Because of its
advantage, PEMFC is demanded as a dependable power
sources for many application such as distributed power
generation and automobile [1], [2].

PEMFC is an extremely complex nonlinear multi-input and
multi-output and coupled dynamic system. The performance of
PEMFC can be represented by a current-voltage relation that is
influenced by levels of internal influential parameters such as
gas flow channel design, relative humidity ratio, operation
temperature or pressure, stoichiometric flow rate, and others.
All these parameters have strong impacts on PEMFC
performance, and are related to each other by nonlinear
behaviors. The inner working processes are accompanied with
liquid, vapor, gas-mixed transportation, heat conduction and
electrochemical dynamic reaction. For such kind of nonlinear
system of PEMFC, yet there is no standardized procedure
neither to estimate a matching mode structure not to select a
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suitable types of models. During the last several decades,
various mechanism models of PEMFC, based on mass, energy
and momentum conservation laws, has received much attention
in an attempt to better understand the phenomena occurring
within the cell, and a variety of mechanism models have been
established in previous research [3], [4]. In open literatures,
these models characteristics focused on FC operating condition
such as temperature effects, reaction gas transportation
phenomena, heat management, etc. Each parameter with
according to the operating conditions will exert different effects
to improve the performance and define quantitative
determination whether the effects of operating factors are
necessary on the PEMFC. These models are very useful for
analyzing the transient characteristic, but they are too
complicated to be used for control system design.

For the purpose of dynamic control of real system in future
work, precise dynamic characteristic model of the PEMFC are
necessary. However, no matter what kind of models, there must
be some errors between the models and real performance of the
PEMFC because assumptions and approximations are made in
modeling for computing simplify. In order to improve the
accuracy of mechanism models and make the models reflect the
actual PEMFC performance better, it is necessary to mode the
structure of the models using nonlinear model approach. Most
dynamic systems can be better described by nonlinear models,
which are able to present the whole behavior of the system
during the all operating condition [5]-[7]. Motivated by this
need, an attention has been paid to identification of nonlinear
dynamical systems. The nonlinear dynamic systems behavior
has made the employ of Artificial Neural Network (ANN) for
the modeling task in recent decades [8], [9]. In addition, all the
numerical studies have proven the multilayer perceptron (MLP)
neural networks match very well for nonlinear system
identification.

In this work, a nonlinear model approach, consisting of a
Neural Network Auto-regressive model with eXogenous inputs
(NNARX) approach is adopted to model the nonlinear dynamic
of the PEMFC. The paper organized as follows: Section Π
gives a description of NNARX model approach. Section III
presents the results of modeling of PEMFC based on NNARX
approach. Section IIII is the conclusion. The proposed
nonlinear modeling of the PEMFC based NNARX approach
procedure is graphically summarized in Fig. 1.
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Fig. 1 Nonlinear model of PEMFC procedure

II.NEURAL NETWORK AUTO-REGRESSIVE MODEL WITH
EXOGENOUS INPUTS (NNARX) MODELING APPROACH

Modeling is an important issue in the process of parameter
estimation. Auto-regressive eXogenous models have been
employed extensively to represent the relationship of the
system output with the system input in the present of noise in
many linear systems. In the process of parameters estimation,
the Levenberg-Marquardt (LM) algorithm is usually used in
neural networks (NN) method. In order to meet a closer
approximation to the real system, nonlinear ARX models are
used, which are modeled by means of NN. The Multilayer
perceptron (MLP) network is one of the most studied members
in the NN. The primary of MLP neural network reason is its
ability to model simple as well as complex functional
relationships. The LM algorithm minimizes the mean-square
error of the prediction errors for the nonlinear ARX model,
which is as particular case of a nonlinear neural network ARX
model (NNARX), as described in after [10]-[13].

A. NNARMAX Model
A general linear system ARX empirical model can be

described by:

)()()()()( 11 kekuqBkyqA �� �� (1)

where y(k) denotes the system output or autoregressive (AR)
factor; u(k) is the system input or exogenous (X) factor, e is the
white noise or disturbance and 1�q negative shift operator. The
polynomials A(q) and B(q) are given by:
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where an is number of output poles; bn is the number of
input zeros and kn is the system time delay. In order to
estimate the parameter of nonlinear ARX model structure,
the NN can be done. The neural network version of ARX
model structure is defined as Neural Network ARX
(NNARX).The NNARX model structure is presented in Fig.
2. The relationship between input-output structures of
NNARX mode can be shown by

)(]),([)( kekgky �� θϕ (5)

The one-step-ahead (OSA) prediction of the NNARX model
structure is defined by

]),([)( θϕθ kgky �� (6)

where g is the function realized by the multilayer perceptron
neural network method.

Fig. 2 NNARX model structure approach

B. Multilayer Perceptron (MLP) Network
The multilayer perceptron (MLP) network is one of most

used of the NN family; because of its enable simply represent
complex function. The class of MLP NN meted with three
layers: an input, an output and hidden layer. In the hidden layer
(j) of each neuron, the sums up of input data ix after weighting
them with strengths of the respective connections jiw from the

input layer and computed output jy as a function of the sum:

)(
1
	
�

�
q

i
ijij Xwfy (7)

where the function )(f 
 can be linear, threshold, sigmoid,
hyperbolic tangent and radial basis. In this paper, hyperbolic
tangent functions are considered for the neurons in the hidden
layer and linear function for the output layer neurons,
respectively. The output of the MLP presented:
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where q is hidden neurons, wji between input and hidden
neuron weighting, wij between hidden neuron and output
weighting and m is input number. The weighting w and W of
are the adjustable parameter of the network and determine
through the training process. The sets of training inputs data
u(t) and corresponding outputs y(t) defined

},,1)](),({[ NkkykuZ N
��� (9)

The goal of training is to meet a mapping from the training
data set to the set of possible weights θ

�
�NZ , so that the

network will produce the close to the true outputs y(k). The
prediction error measurement is often described by a function
required as the loss function. The general form can be depicted
as
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In (10) is used to simplify differentiation when minimizing
residual ),()(),( θθε kykyk ��� . NZ is mean the training data
set. The minimizing solution implements the
Levenberg-Marquardt (LM) algorithm, due to its rapid
convergence properties and robustness.

C.The Levenberg-Marquardt (LM) Algorithm
The LM algorithm is the iterative numerical process in

realizing solution. In this paper, NNARX model of PEMFC is
obtained by LM algorithm. For minimal of sum of the squares

),( θε k , the LM algorithm is used in optimizing the parameter
vector θ . The linear approximation to the ith residual of the LM
algorithm at iteration is given by:
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and the criterion id given by
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The gradient and Hessian for iθθ � are given by:
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The next iteration parameter vector is defined iii f��� θθ 1 . The

search direction if is computed by
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That damping factor λ is computed at each iteration. The

reduction of ),( N
N ZP θ is determined based on the ratio:
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The stopped criterion in iterative compute process of LM
algorithm is satisfied convergence value.

III. RESULT AND DISCUSSION

In these work, the identification process was presented by the
widespread mathematical software package MATLAB,
provided by the MathWorks Inc. [14]. The steady output
voltage of power source of PEMFC is an important. PEMFC
experimental data was recorded during various step load of
current. The data were divided into two sets, one for training
and remaining for validation. The input-output data is presented
in Fig. 3. [15]
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Fig. 3 Input and output experimental data of PEMFC

The NNARX model of PEMFC was employed for divided
set data and it shows the modeling of second order nonlinear
dynamic system of PEMFC. In order to model a good structure
of PEMFC, the model structure parameter selection of system
which we wish to employ is done firstly. In the process of
model structure selection of NNARX model consists of two sun
problems: a regressor parameter selection and MLP network
architecture selection. As regressor structure selection is used
two past inputs (nb) and two past outputs (na) in this work as
shown in Fig. 4.
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Fig. 4 Network architecture of NNARX model of PEMFC

Furthermore, the MLP architecture was selected five
tannhypberbolic (tanh) neurons in hidden layer, and a single
linear neuron in output layer. Fig. 5 is the results of iteration
criterion NNARX modeling which demonstrated a good
training convergence value. The comparison of experimental
data of PEMFC and NNARX model over training set data of
patterns are presented in Fig. 6. From the residual plot in
training process, the trained NNARX model output OSA is in
good agreement with the experimental output of PEMFC.
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Fig. 5 Iterative criterion of fit with training process
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Fig. 6 Training test of NNARX model

Fig. 7 shows the experimental data of PEMFC and NNARX
model OSA in validation procedure, the NNARX approach has
ability to mode the real system data. The residual shows that
mode prediction and experimental output is closer.

The residuals of autocorrelation and cross correlation with
NNARX validation process plot in Fig. 8. The results show the
residual pass the correlated coefficient of 95% confidence
limited in autocorrelation process; the signification correlation
between the input and residual was completely modeled in
cross correlation process. That indicated NNARX model
approach can fit accuracy of the PEMFC system.
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Fig. 7 Validation test of NNARX model
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IV. CONCLUSION

In this paper, the nonlinear modeling of PEMFC is applied
via Neural Network Auto-regressive model with eXogenous
inputs (NNARX) approach. From the results of training process,
the LM algorithm of MLP neural network can fit training
iteration criterion convenience. In NNARX mode with small
network architecture was founded to be adequate to model the
PEMFC dynamic system. Applying the validation tests, the
NNARX model could pass the residual test and cross
correlation tests. This work demonstrates that the nonlinear
modeling approach, employing the NNARX model, provides a
very simple and yet highly accurate model of the PEMFC
system.
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