Search results for: Metallurgical grade silicon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 489

Search results for: Metallurgical grade silicon

369 Specification of Irradiation Conditions in the DONA 5 Rotational Channel of the LVR-15 Reactor

Authors: Zdena Lahodová, Michal Koleška, Ladislav Viererbl

Abstract:

This article summarizes ways to verify neutron fluence for neutron transmutation doping of silicon with phosphorus on the LVR-15 reactor. Neutron fluence is determined using activation detectors placed along the crystal in a strip or encapsulated in a rod holder. Holders are placed at the centre of a water-filled capsule or in an aluminum or silicon ingot that simulates a real single crystal. If the diameter of the crystal is significantly less than the capsule diameter and water from the primary circuit enters the free space in the capsule, neutron interaction in the water changes neutron fluence, affecting axial irradiation homogeneity. The effect of moving the capsule vertically in the channel relative to maximum neutron fluence in the reactor core was also measured. Even a small shift of the capsule-s centre causes great irradiation inhomogeneity. This effect was measured using activation detectors, and was also confirmed by MCNP calculation.

Keywords: Irradiation homogeneity, neutron fluence, neutron transmutation doping, rotational channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
368 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: Reinforcement, silicon carbide, fly ash, red mud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
367 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.

Keywords: Nodular cast iron, silicon carbide, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
366 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma

Abstract:

The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.

Keywords: Atomic force microscopy, nanochannel, specific down force energy, Y shape, burr, silicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
365 Energy Efficient Recycling of in-Plant Fines

Authors: H. Ahmed, A. Persson, L. Sundqvist, B. Biorkman

Abstract:

Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steelmaking processes is practiced successfully at several plants but for limited extent.

In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.

Keywords: Iron and Steel Wastes, Recycling, Self-Reducing Briquettes, Thermogravimetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
364 A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya

Abstract:

Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
363 Examination of Self and Decision Making Levels of Students Receiving Education in Schools of Physical Education and Sports

Authors: Mustafa Yildiz, Murat Tekin, Hasan Şahan, Ahmet Şahin, Mehmet Şaker, Buket Ulucan, Osman Mutlu

Abstract:

The purpose of this study is to examine the self and decision making levels of students receiving education in schools of physical training and sports. The population of the study consisted 258 students, among which 152 were male and 106 were female ( X age=19,3713 + 1,6968), that received education in the schools of physical education and sports of Selcuk University, Inonu University, Gazi University and Karamanoglu Mehmetbey University. In order to achieve the purpose of the study, the Melbourne Decision Making Questionnary developed by Mann et al. (1998) [1] and adapted to Turkish by Deniz (2004) [2] and the Self-Esteem Scale developed by Aricak (1999) [3] was utilized. For analyzing and interpreting data Kolmogorov-Smirnov test, t-test and one way anova test were used, while for determining the difference between the groups Tukey test and Multiple Linear Regression test were employed and significance was accepted at P<0,05. SPSS (Statistical package for social sciences) package software was used for evaluating the data and finding out the calculated values. In conclusion of the present study, while cautious, avoidant and postponing decision making levels of male students were found out to be higher than female students, panic decision making levels of female students were found out to be higher than that of male students. While cautious, avoidant and panicdriven decision making levels of the students attending to the first grade were found out to be higher than these of the fourth grades, for the students attending to the fourth grade influential decision making levels were found out to be higher. While male students were found out to be having relatively higher self value, self confidence and self sufficiency levels, for female students achieving, productivity and depressive affect were found out to be higher in comparison with male students. While self values, achieving and productivity levels of the students attending to the first grade were found out to be higher than those of fourth grade students, fourth grade students were determined to have higher self-confidence, depressive affection and self-sufficiency levels. It was also determined that there is a significant relation between decision making levels and self levels.

Keywords: Physical Education And Sports, Student, Self, Decision Making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
362 Alignment of MG-63 Osteoblasts on Fibronectin-Coated Phosphorous Doping Lattices in Silicon

Authors: Andreas Körtge, Susanne Stählke, Regina Lange, Mario Birkholz, Mirko Fraschke, Katrin Schulz, Barbara Nebe, Patrick Elter

Abstract:

A major challenge in biomaterials research is the regulation of protein adsorption which is a key factor for controlling the subsequent cell adhesion at implant surfaces. The aim of the present study was to control the adsorption of fibronectin (FN) and the attachment of MG-63 osteoblasts with an electronic nanostructure. Shallow doping line lattices with a period of 260 nm were produced for this purpose by implantation of phosphorous in silicon wafers. Protein coverage was determined after incubating the substrate with FN by means of an immunostaining procedure and the measurement of the fluorescence intensity with a TECAN analyzer. We observed an increased amount of adsorbed FN on the nanostructure compared to control substrates. MG-63 osteoblasts were cultivated for 24h on FN-incubated substrates and their morphology was assessed by SEM. Preferred orientation and elongation of the cells in direction of the doping lattice lines was observed on FN-coated nanostructures.

Keywords: Cell adhesion, electronic nanostructures, doping lattice, fibronectin, MG-63 osteoblasts, protein adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
361 Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications

Authors: V. Zamora, Z. Zhang, A. Meldrum

Abstract:

The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.

Keywords: Oils, optical resonators, sensing applications, whispering gallery modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
360 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments

Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui

Abstract:

Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.

Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
359 Prevalence of Epstein-Barr Virus Latent Membrane Protein-1 in Jordanian Patients with Hodgkin's Lymphoma and Non- Hodgkin's Lymphoma

Authors: Fawzi Irshaid, Adnan Jaran, Fatiha Dilmi, Khaled Tarawneh, Raji Hadeth, Ahad Al-Khatib

Abstract:

The aim of this study was to estimate the frequency of EBV infection in Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL) occurring in Jordanian patients. A total of 55 patients with lymphoma were examined in this study. Of 55 patients, 30 and 25 were diagnosed as HL and NHL, respectively. The four HL subtypes were observed with the majority of the cases exhibited the mixed cellularity (MC) subtype followed by the nodular sclerosis (NS). The high grade was found to be the commonest subtype of NHL in our sample, followed by the low grade. The presence of EBV virus was detected by immunostating for expression of latent membrane protein-1 (LMP-1). The frequency of LMP-1 expression occurred more frequent in patients with HL (60.0%) than in patients with NHL (32.0%). The frequency of LMP-1 expression was also higher in patients with MC subtype (61.11%) than those patients with NS (28.57%). No age or gender difference in occurrence of EBV infection was observed among patient with HL. By contrast, the prevalence of EBV infection in NHL patients aged below 50 was lower (16.66%) than in NHL patients aged 50 or above (46.15%). In addition, EBV infection was more frequent in females with NHL (38.46%) than in male with NHL (25%). In NHL cases, the frequency of EBV infection in intermediate grade (60.0%) was high when compared with frequency of low (25%) or high grades (25%). In conclusion, analysis of LMP-1 expression indicates an important role for this viral oncogene in the pathogenesis of EBV-associated malignant lymphomas. These data also support the previous findings that people with EBV may develop lymphoma and that efforts to maintain low lymphoma should be considered for people with EBV infection.

Keywords: Hodgkin lymphoma, Epstein Barr virus, hematoxylin, infection, LMP-1 expression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
358 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer

Authors: D. A. Binas, M. Konidari, C. Bourgioti, L. Angela Moulopoulou, T. L. Economopoulos, G. K. Matsopoulos

Abstract:

High grade ovarian epithelial cancer (OEC) is the most fatal gynecological cancer and poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study presents a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series, in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.

Keywords: K-means segmentation, ovarian epithelial cancer, quantitative characteristics, registration, tumor visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
357 Performance Analysis of Absorption Power Cycle under Different Source Temperatures

Authors: Kyoung Hoon Kim

Abstract:

The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.

Keywords: Ammonia-water mixture, Kalina cycle, low-grade heat source, source temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
356 Effect of Oxygen and Micro-Cracking on the Flotation of Low Grade Nickel Sulphide Ore

Authors: Edison Muzenda, Ayo S Afolabi

Abstract:

This study investigated the effect of oxygen and micro-cracking on the flotation of low grade nickel sulphide ore. The ore treated contained serpentine minerals which have a history of being difficult to process efficiently. The use of oxygen as a bubbling gas has been noted to be effective because it increases the pulp potential. The desired effect of micro cracking the ore is that the nickel sulphide minerals will become activated and this activation will render these minerals more susceptible to react with potassium amyl xanthate collectors, resulting in a higher recovery of nickel and hinder the recovery of other undesired minerals contained in the ore. Higher nickel recoveries were obtained when pure oxygen was used as a bubbling gas rather than the conventional air. Microwave cracking favored the recovery of nickel.

Keywords: Flotation, Conventional air, Oven micro-cracking, Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
355 Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy

Authors: Deepak D, Anjaiah D, Yagnesh Sharma N.

Abstract:

It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.

Keywords: Abrasive water suspension jet, Skin friction coefficient, Jet kinetic energy, Particulate loading, Stokes number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
354 Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle

Authors: Kyoung Hoon Kim, Chul Ho Han

Abstract:

Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.

Keywords: Organic flash cycle (OFC), low grade heat source, exergy, anergy, flash temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
353 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
352 Investigation of the Effect of Teaching a Thinking and Research Lesson by Cooperative and Traditional Methods on the Creativity of Sixth Grade Students

Authors: Faroogh Khakzad, Marzieh Dehghani, Elahe Hejazi

Abstract:

The present study investigates the effect of teaching a Thinking and Research lesson by cooperative and traditional methods on the creativity of sixth-grade students in Piranshahr province. The statistical society includes all the sixth-grade students of Piranshahr province. The sample of this studytable was selected by available sampling from among male elementary schools of Piranshahr. They were randomly assigned into two groups of cooperative teaching method and traditional teaching method. The design of the study is quasi-experimental with a control group. In this study, to assess students’ creativity, Abedi’s creativity questionnaire was used. Based on Cronbach’s alpha coefficient, the reliability of the factor flow was 0.74, innovation was 0.61, flexibility was 0.63, and expansion was 0.68. To analyze the data, t-test, univariate and multivariate covariance analysis were used for evaluation of the difference of means and the pretest and posttest scores. The findings of the research showed that cooperative teaching method does not significantly increase creativity (p > 0.05). Moreover, cooperative teaching method was found to have significant effect on flow factor (p < 0.05), but in innovation and expansion factors no significant effect was observed (p < 0.05).

Keywords: Cooperative teaching method, traditional teaching method, creativity, flow, innovation, flexibility, expansion, thinking and research lesson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
351 Examination of Self-Efficacy and Life Satisfaction Levels of Students Receiving Education in Schools of Physical Education and Sports

Authors: Hasan Şahan, Murat Tekin, Mustafa Yıldız, Meriç Eraslan, Mevlüt Yıldız, Hatice Sim, Demet Neriman Yarar

Abstract:

The purpose of this study is to examine the selfefficacy and life satisfaction levels of students receiving education in schools of physical education and sports. The population of the study consisted 263 students, among which 154 were male and 109 were female ( X age=19,4905 + 2,5605), that received education in the schools of physical education and sports of Selcuk University, Inonu University, Gazi University and Karamanoglu Mehmetbey University. In order to achieve the purpose of the study, the selfefficacy scale, which was developed by Jarrusselam and Shwarzer (1981) [1] and adapted to Turkish by Yesillay (1993) [2], and the life satisfaction scale, developed by Diener, Emmos, Larsen and Griffin (1985) [3] and adapted to Turkish by Kokler (1991) [4], were utilized.For analyzing and interpreting data Kolmogorov-Smirnov test, t-test and one way anova test were used, while for determining the difference between the groups Tukey test and Multiple Linear Regression test were employed and significance was accepted at P<0,05. SPSS (Statistical package for social sciences) package software was used for evaluating the data and finding out the calculated values.In conclusion of this study, it was determined that female students have higher life satisfaction levels than male students, while students attending to the second grade had higher life satisfaction levels than fourth grade students. On the other hand, general self-efficacy levels of male students were found out to be higher than that of female students. It was also determined that students attending to the fourth grade had higher general self-efficacy levels than those receiving education in the first grade. Availability of a significant relation was determined between life satisfaction levels and self-efficacy levels.

Keywords: Physical Education And Sports, Student, Life Satisfaction, Self-Efficacy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
350 Questions in the School

Authors: Jana M. Havigerová, Jiří Haviger

Abstract:

Paper deals with the topic of questions as important components of information behavior in the school. By analyzing the Corpus Schola2010, the state of contemporary education in terms of questioning is proven unsatisfactory: 80% of the questions are asked by teachers; most of teacher-s questions are asked at the beginning of the first grade, than their number decreases and is settling down on 80±10 questions per lesson. The average number of questions within one lesson per one pupil is generally less than one whole question. The highest values are achieved in the first, sixth, eighth and tenth grade,, i.e. in the transition years in which pupils are moving into higher levels of education and every following year it declines. We can state Czech school do not support questioning and question skill of their pupils, thereby typical Czech schools are neglecting the development of thinking, reasoning and cooperation of their pupils.

Keywords: information behavior, questions, primary and secondary education, Czech Republic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
349 Light Confinement in Low Index Nanometer Areas

Authors: N. Aravantinos-Zafiris, M. M. Sigalas

Abstract:

In this work we numerically examine structures which could confine light in nanometer areas. A system consisting of two silicon disks with in plane separation of a few tens of nanometers has been studied first. The normalized unitless effective mode volume, Veff, has been calculated for the two lowest whispering gallery mode resonances. The effective mode volume is reduced significantly as the gap between the disks decreases. In addition, the effect of the substrate is also studied. In that case, Veff of approximately the same value as the non-substrate case for a similar two disk system can be obtained by using disks almost twice as thick. We also numerically examine a structure consisting of a circular slot waveguide which is formed into a silicon disk resonator. We show that the proposed structure could have high Q resonances thus raising the belief that it is a very promising candidate for optical interconnects applications. The study includes several numerical calculations for all the geometric parameters of the structure. It also includes numerical simulations of the coupling between a waveguide and the proposed disk resonator leading to a very promising conclusion about its applicability.

Keywords: Disk resonators, field enhancement, optical interconnect, slot waveguides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
348 The Effect of Cyclic Speed on the Wear Properties of Molybdenum Disulfide Greases under Extreme Pressure Loading Using 4 Balls Wear Tests

Authors: Gabi Nehme

Abstract:

The relationship between different types of Molybdenum disulfide greases under extreme pressure loading and different speed situations have been studied using Design of Experiment (DOE) under 1200rpm steady state rotational speed and cyclic frequencies between 2400 and 1200rpm using a Plint machine software to set up the different rotational speed situations.  Research described here is aimed at providing good friction and wear performance while optimizing cyclic frequencies and MoS2 concentration due to the recent concern about grease behavior in extreme pressure applications. Extreme load of 785 Newton was used in conjunction with different cyclic frequencies (2400rpm -3.75min, 1200rpm -7.5min, 2400rpm -3.75min, 1200rpm -7.5min), to examine lithium based grease with and without MoS2 for equal number of revolutions, and a total run of 36000 revolutions; then compared to 1200rpm steady speed for the same total number of revolutions. 4 Ball wear tester was utilized to run large number of experiments randomly selected by the DOE software. The grease was combined with fine grade MoS2 or technical grade then heated to 750C and the wear scar width was collected at the end of each test. DOE model validation results verify that the data were very significant and can be applied to a wide range of extreme pressure applications. Based on simulation results and Scanning Electron images (SEM), it has been found that wear was largely dependent on the cyclic frequency condition. It is believed that technical grade MoS2 greases under faster cyclic speeds perform better and provides antiwear film that can resist extreme pressure loadings. Figures showed reduced wear scars width and improved frictional values.

 

Keywords: MoS2 grease, wear, friction, extreme load, cyclic frequencies, aircraft grade bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
347 Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications

Authors: Haridas Kuruveettil, Dongning Zhao, Cheong Jia Hao, Minkyu Je

Abstract:

We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for  a three dimensional ultrasound  bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface   a 2-D array of    high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together.  Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².

Keywords: Ultrasound, analog front end, medical imaging, beam forming, biomicroscope, transimpedance gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8140
346 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design

Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).

Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode, high breakdown voltage, field plate, Baliga’s figure-of-merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
345 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
344 The Performance of PVD Coated Grade in Milling of ADI 800

Authors: M. Ibrahim Sadik, Toril Myrtveit

Abstract:

The aim of this investigation is to study the performance of the new generation of the PVD coated grade and to map the influence of cutting conditions on the tool life in milling of ADI (Austempered Ductile Iron). The results show that chipping is the main wear mechanism which determines the tool life in dry condition and notch wear in wet condition for this application. This due to the different stress mechanisms and preexisting cracks in the coating. The wear development shows clearly that the new PVD coating (C20) has the best ability to delay the chipping growth. It was also found that a high content of Al in the new coating (C20) was especially favorable compared to a TiAlN multilayer with lower Al content (C30) or CVD coating. This is due to fine grains and low compressive stress level in the coating which increase the coating ability to withstand the mechanical and thermal impact. It was also found that the use of coolant decreases the tool life with 70-80% compare to dry milling.

Keywords: Austempered Ductile Iron (ADI), coating, chipping, milling, tool performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
343 A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park

Abstract:

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
342 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students

Authors: Liang Wang, Wei Zhang

Abstract:

Nowadays sustainable development has increasingly become an important research topic of engineering education all over the world. Engineering Education for Sustainable Development (EESD) highlighted the importance of addressing sustainable development in engineering practice. However, whether and how the professional engineering learning and experience affect those perceptions is an interesting research topic especially in Chinese context. Our study fills this gap by investigating perceptions bias of EESD among first-grade engineering students, fourth-grade engineering students and experienced engineers using a triple-dimensional model. Our goal is to find the effect of engineering learning and experience on sustainable development and make these learning and experiences more accessible for students and engineers in school and workplace context. The data (n = 138) came from a Likert questionnaire based on the triple-dimensional model of EESD adopted from literature reviews and the data contain 48 first-grade students, 56 fourth-grade students and 34 engineers with rich working experience from Environmental Engineering, Energy Engineering, Chemical Engineering and Civil Engineering in or graduated from Zhejiang University, China. One-way ANOVA analysis was used to find the difference in different dimensions among the three groups. The statistical results show that both engineering students and engineers have a well understanding of sustainable development in ecology dimension of EESD while there are significant differences among three groups as to the socio-economy and value rationality dimensions of EESD. The findings provide empirical evidence that both engineering learning and professional engineering experience are helpful to cultivate the cognition and perception of sustainable development in engineering education. The results of this work indicate that more practical content should be added to students’ engineering education while more theoretical content should be added to engineers’ training in order to promote the engineering students’ and engineers’ perceptions of sustainable development. In addition, as to the design of engineering courses and professional practice system for sustainable development, we should not only pay attention to the ecological aspects, but also emphasize the coordination of ecological, socio-economic and human-centered sustainable development (e.g., engineer's ethical responsibility).

Keywords: Engineering education, sustainable development, experienced engineers, engineering students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
341 Performance of Ground Clay Bricks as Partial Cement Replacement in Grade 30 Concrete

Authors: Kartini, K., Rohaidah, M.N., Zuraini, ZA.

Abstract:

Demolitions of buildings have created a lot of waste and one of it is clay bricks. The waste clay bricks were ground to roughly cement fineness and used to partially replaced cement at 10%, 20% and 30% with w/b ratio of 0.6 and tested at 7, 28, 60, 90 and 120 days. The result shows that the compressive strength of GCB concrete increases over age however, decreases as the level of replacements increases. It was also found that 10% replacement of GCB gave the highest compressive strength, however for optimum replacement, 30% was chosen as it still attained strength of grade 30 concrete. In terms of durability performances, results show that GCB replacement up to 30% was found to be efficient in reducing water absorption as well as water permeability. These studies show that GCB has the potential to be used as partial cement replacement in making concrete.

Keywords: Compressive Strength, Ground Clay Bricks, Partial Cement Replacement, Water Absorption and Permeability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3055
340 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh Kang

Abstract:

Aluminium and its alloys have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are solution heat treatment, artificial ageing and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of As welded joints of the aluminium alloys and post weld heat treated joints of the aluminium alloys were examined.

Keywords: Aluminium Alloys, Post weld Heat Treatment, TIG welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3219