Search results for: Statistical learning theory
3092 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Authors: T. Zergoug, S.H. Abaidia, A. Nedjar, M. Y. Mokeddem
Abstract:
Physical properties of uranium dinitride (UN2) were investigated in detail using first principle calculations based on density functional theory (DFT). To study the strong correlation effects due to 5f uranium valence electrons, the on-site coulomb interaction correction U via the Hubbard-like term (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard-U is strong like Young modulus but for others it is weakly noticeable such as bulk modulus. We noticed also that from U=7.5 eV, elastic results don’t agree with the cubic cell because of the C44 values which turn out to be negative.
Keywords: Ab initio, bulk modulus, DFT, DFT + U.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25583091 Effects of Human Factors on Workforce Scheduling
Authors: M. Othman, N. Bhuiyan, G. J. Gouw
Abstract:
In today-s competitive market, most companies develop manufacturing systems that can help in cost reduction and maximum quality. Human issues are an important part of manufacturing systems, yet most companies ignore their effects on production performance. This paper aims to developing an integrated workforce planning system that incorporates the human being. Therefore, a multi-objective mixed integer nonlinear programming model is developed to determine the amount of hiring, firing, training, overtime for each worker type. This paper considers a workforce planning model including human aspects such as skills, training, workers- personalities, capacity, motivation, and learning rates. This model helps to minimize the hiring, firing, training and overtime costs, and maximize the workers- performance. The results indicate that the workers- differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human learning rates on the performance of the production systems.Keywords: Human Factors, Learning Curves, Workers' Differences, Workforce Scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18623090 Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors
Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali
Abstract:
The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.
Keywords: ZnO, Density functional theory, Diluted magnetic semiconductors, Ferromagnetic materials, FP-L(APW+lo).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18873089 Bifurcation Analysis of a Plankton Model with Discrete Delay
Authors: Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri
Abstract:
In this paper, a delayed plankton-nutrient interaction model consisting of phytoplankton, zooplankton and dissolved nutrient is considered. It is assumed that some species of phytoplankton releases toxin (known as toxin producing phytoplankton (TPP)) which is harmful for zooplankton growth and this toxin releasing process follows a discrete time variation. Using delay as bifurcation parameter, the stability of interior equilibrium point is investigated and it is shown that time delay can destabilize the otherwise stable non-zero equilibrium state by inducing Hopf-bifurcation when it crosses a certain threshold value. Explicit results are derived for stability and direction of the bifurcating periodic solution by using normal form theory and center manifold arguments. Finally, outcomes of the system are validated through numerical simulations.
Keywords: Plankton, Time delay, Hopf-bifurcation, Normal form theory, Center manifold theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19233088 A Proposed Framework for Visualization to Teach Computer Science
Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin
Abstract:
Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14553087 Approximation Incremental Training Algorithm Based on a Changeable Training Set
Authors: Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei
Abstract:
The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.Keywords: support vector regression, incremental learning, changeable training set, quick training algorithm, accurate solutionprocedure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14843086 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21293085 Teachers- Perceptions on the Use of E-Books as Textbooks in the Classroom
Authors: Abd Mutalib Embong, Azelin M Noor, Razol Mahari M Ali, Zulqarnain Abu Bakar, Abdur- Rahman Mohamed Amin
Abstract:
At the time where electronic books, or e-Books, offer students a fun way of learning , teachers who are used to the paper text books may find it as a new challenge to use it as a part of learning process. Precisely, there are various types of e-Books available to suit students- knowledge, characteristics, abilities, and interests. The paper discusses teachers- perceptions on the use of ebooks as a paper text book in the classroom. A survey was conducted on 72 teachers who use e-books as textbooks. It was discovered that a majority of these teachers had good perceptions on the use of ebooks. However, they had little problems using the devices. It can be overcome with some strategies and a suggested framework.Keywords: Classroom, E-books, perception, teacher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57493084 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6103083 Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System
Authors: A. Jawahar
Abstract:
In this paper, the dependence of soliton pulses with respect to phase in a 10Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the ‘I’ also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point (I).Keywords: Soliton interaction, Initial relative spacing, phase, Perturbation theory and telecommunication system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18653082 Novel NMR-Technology to Assess Food Quality and Safety
Authors: Markus Link, Manfred Spraul, Hartmut Schaefer, Fang Fang, Birk Schuetz
Abstract:
High Resolution NMR Spectroscopy offers unique screening capabilities for food quality and safety by combining non-targeted and targeted screening in one analysis.
The objective is to demonstrate, that due to its extreme reproducibility NMR can detect smallest changes in concentrations of many components in a mixture, which is best monitored by statistical evaluation however also delivers reliable quantification results.
The methodology typically uses a 400 MHz high resolution instrument under full automation after minimized sample preparation.
For example one fruit juice analysis in a push button operation takes at maximum 15 minutes and delivers a multitude of results, which are automatically summarized in a PDF report.
The method has been proven on fruit juices, where so far unknown frauds could be detected. In addition conventional targeted parameters are obtained in the same analysis. This technology has the advantage that NMR is completely quantitative and concentration calibration only has to be done once for all compounds. Since NMR is so reproducible, it is also transferable between different instruments (with same field strength) and laboratories. Based on strict SOP`s, statistical models developed once can be used on multiple instruments and strategies for compound identification and quantification are applicable as well across labs.
Keywords: Automated solution, NMR, non-targeted screening, targeted screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22483081 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: Computer vision, deep learning, object detection, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8283080 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15953079 Review of Studies on Agility in Knowledge Management
Authors: Ferdi Sönmez, Başak Buluz
Abstract:
Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.
Keywords: Knowledge management, agility requirements, agility in knowledge management, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12573078 An Interactive Web-based Simulation Tool for Surgical Thread
Authors: A. Ruimi, S. Goyal, B. M. Nour
Abstract:
Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.Keywords: Cosserat rod-theory, FEM simulations, Modeling, Surgical thread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16543077 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012
Authors: Mohammadreza Ashouri, Majid Bayatian
Abstract:
Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.
Keywords: Fire statistics, fire analysis, accident prevention, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7693076 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China
Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun
Abstract:
The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.
Keywords: Complex adaptive system, low carbon ecology, index system, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9983075 The Impacts of Off-Campus Students on Local Neighbourhood in Malaysia
Authors: Dasimah Bt Omar, Faizul Abdullah, Fatimah Yusof, Hazlina Hamdan, Naasah Nasrudin, Ishak Che Abullah
Abstract:
The impacts of near-campus student housing, or offcampus students accommodation cannot be ignored by the universities and as well as the community officials. Numerous scholarly studies, have highlighted the substantial economic impacts either; direct, indirect or induced, and cumulatively the roles of the universities have significantly contributed to the local economies. The issue of the impacts of off-campus student rental housing on neighbourhoods is one that has been of long-standing but increasing concern in Malaysia. Statistically, in Malaysia, there was approximately a total of 1.2 - 1.5 million students in 2009. By the year 2015, it is expected that 50 per cent of 18 to 30 year olds active population should gain access to university education, amounting to 120,000 yearly. The objectives of the research are to assess the impacts off-campus students on the local neighbourhood and specifically to obtain information on the living and learning conditions of off-campus students of Universiti Teknologi MARA Shah Alam, Malaysia. It is also to isolate those factors that may impede the successful learning so that priority can be given to them in subsequent policy implementations and actions by government and the higher education institutions.Keywords: off-campus students, neighbourhood, impacts, living and learning conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44123074 Educating the Educators: Interdisciplinary Approaches to Enhance Science Teaching
Authors: Denise Levy, Anna Lucia C. H. Villavicencio
Abstract:
In a rapid-changing world, science teachers face considerable challenges. In addition to the basic curriculum, there must be included several transversal themes, which demand creative and innovative strategies to be arranged and integrated to traditional disciplines. In Brazil, nuclear science is still a controversial theme, and teachers themselves seem to be unaware of the issue, most often perpetuating prejudice, errors and misconceptions. This article presents the authors’ experience in the development of an interdisciplinary pedagogical proposal to include nuclear science in the basic curriculum, in a transversal and integrating way. The methodology applied was based on the analysis of several normative documents that define the requirements of essential learning, competences and skills of basic education for all schools in Brazil. The didactic materials and resources were developed according to the best practices to improve learning processes privileging constructivist educational techniques, with emphasis on active learning process, collaborative learning and learning through research. The material consists of an illustrated book for students, a book for teachers and a manual with activities that can articulate nuclear science to different disciplines: Portuguese, mathematics, science, art, English, history and geography. The content counts on high scientific rigor and articulate nuclear technology with topics of interest to society in the most diverse spheres, such as food supply, public health, food safety and foreign trade. Moreover, this pedagogical proposal takes advantage of the potential value of digital technologies, implementing QR codes that excite and challenge students of all ages, improving interaction and engagement. The expected results include the education of the educators for nuclear science communication in a transversal and integrating way, demystifying nuclear technology in a contextualized and significant approach. It is expected that the interdisciplinary pedagogical proposal contributes to improving attitudes towards knowledge construction, privileging reconstructive questioning, fostering a culture of systematic curiosity and encouraging critical thinking skills.
Keywords: Science education, interdisciplinary learning, nuclear science; scientific literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8193073 Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse
Authors: Meredith Stevenson, John E. Porter
Abstract:
Since the pioneering work of Zadeh, fuzzy set theory has been applied to a myriad of areas. Song and Chissom introduced the concept of fuzzy time series and applied some methods to the enrollments of the University of Alabama. In recent years, a number of techniques have been proposed for forecasting based on fuzzy set theory methods. These methods have either used enrollment numbers or differences of enrollments as the universe of discourse. We propose using the year to year percentage change as the universe of discourse. In this communication, the approach of Jilani, Burney, and Ardil is modified by using the year to year percentage change as the universe of discourse. We use enrollment figures for the University of Alabama to illustrate our proposed method. The proposed method results in better forecasting accuracy than existing models.
Keywords: Fuzzy forecasting, fuzzy time series, fuzzified enrollments, time-invariant model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25043072 Groebner Bases Computation in Boolean Rings is P-SPACE
Authors: Quoc-Nam Tran
Abstract:
The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general polynomial ring setting. However, for many important applications in computer science such as satisfiability and automated verification of hardware and software, computations are performed in a Boolean ring. In this paper, we give an algorithm to show that Groebner bases computation is PSPACE in Boolean rings. We also show that with this discovery, the Groebner bases method can theoretically be as efficient as other methods for automated verification of hardware and software. Additionally, many useful and interesting properties of Groebner bases including the ability to efficiently convert the bases for different orders of variables making Groebner bases a promising method in automated verification.Keywords: Algorithm, Complexity, Groebner basis, Applications of Computer Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19603071 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16583070 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules
Authors: Tamanna Siddiqui, M. Afshar Alam
Abstract:
Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality
Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15273069 Calculation of the Ceramics Weibull Parameters
Abstract:
The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.Keywords: Hip joint endoprosthesis, ceramic head, FEM analysis, Weibull's weakest-link theory, failure probability, material parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26373068 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data
Authors: Chen Chou, Feng-Tyan Lin
Abstract:
Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.
Keywords: Big Data, ITS, influence range, living area, central place theory, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9763067 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids
Authors: Boualem Chetti
Abstract:
In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.
Keywords: Three-lobe bearings, Micropolar fluid, Dynamic characteristics, Stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27153066 A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids
Authors: K. Krishna Naik, M. N. Giri Prasad
Abstract:
These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.Keywords: AP, RSSI, RPM, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13163065 Transferring Route Plan over Time
Authors: Barıs Kocer, Ahmet Arslan
Abstract:
Travelling salesman problem (TSP) is a combinational optimization problem and solution approaches have been applied many real world problems. Pure TSP assumes the cities to visit are fixed in time and thus solutions are created to find shortest path according to these point. But some of the points are canceled to visit in time. If the problem is not time crucial it is not important to determine new routing plan but if the points are changing rapidly and time is necessary do decide a new route plan a new approach should be applied in such cases. We developed a route plan transfer method based on transfer learning and we achieved high performance against determining a new model from scratch in every change.Keywords: genetic algorithms, transfer learning, travellingsalesman problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12713064 Promoting Non-Formal Learning Mobility in the Field of Youth
Authors: Juha Kettunen
Abstract:
The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.
Keywords: Non-formal learning, youth work, social inclusion, innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8273063 Anthropomorphism in Robotics Engineering for Disabled People
Abstract:
In its attempt to offer new ways into autonomy for a large population of disabled people, assistive technology has largely been inspired by robotics engineering. Recent human-like robots carry new hopes that it seems to us necessary to analyze by means of a specific theory of anthropomorphism. We propose to distinguish a functional anthropomorphism which is the one of actual wheelchairs from a structural anthropomorphism based on a mimicking of human physiological systems. If functional anthropomorphism offers the main advantage of eliminating the physiological systems interdependence issue, the highly link between the robot for disabled people and their human-built environment would lead to privilege in the future the anthropomorphic structural way. In this future framework, we highlight a general interdependence principle : any partial or local structural anthropomorphism generates new anthropomorphic needs due to the physiological systems interdependency, whose effects can be evaluated by means of specific anthropomorphic criterions derived from a set theory-based approach of physiological systems.Keywords: Anthropomorphism, Human-like machines, Systemstheory, Disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989