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Abstract—Training a machine learning model for object detection
that generalizes well is known to benefit from a training dataset
with diverse examples. However, training datasets usually contain
many repeats of common examples of a class and lack rarely seen
examples. This is due to the process commonly used during human
annotation where a person would proceed sequentially through a
list of images labeling a sufficiently high total number of examples.
Instead, the method presented involves an active process where, after
the initial labeling of several images is completed, the next subset
of images for labeling is selected by an algorithm. This process of
algorithmic image selection and manual labeling continues in an
iterative fashion. The algorithm used for the image selection is a
deep learning algorithm, based on the U-shaped architecture, which
quantifies the presence of unseen data in each image in order to find
images that contain the most novel examples. Moreover, the location
of the unseen data in each image is highlighted, aiding the labeler in
spotting these examples. Experiments performed using semiconductor
wafer data show that labeling a subset of the data, curated by this
algorithm, resulted in a model with a better performance than a
model produced from sequentially labeling the same amount of data.
Also, similar performance is achieved compared to a model trained
on exhaustive labeling of the whole dataset. Overall, the proposed
approach results in a dataset that has a diverse set of examples per
class as well as more balanced classes, which proves beneficial when
training a deep learning model.

Keywords—Computer vision, deep learning, object detection,
semiconductor.

I. INTRODUCTION

DEEP learning models have become popular in object

detection tasks. These models require a large amount

of labeled data to effectively train. In many cases, collecting

large amounts of data is not difficult, but manually labeling

that data can be very tedious and time consuming. Automatic

labeling is increasing its applicability [1], [2] but requires a

prior labeled dataset to learn from. So, for datasets containing

novel objects, manual labeling is necessary. Since only a subset

of the data can be labeled in the constraints of cost and time,

a way to select this subset is desirable.

Currently, most labelers naively go through as much images

as possible proceeding in the order that the images appear in

the host directory. As they do that, they become very skilled

at detecting classes with high number of examples due to the

repetitive exposure to them. Thus, they are more likely to

miss examples of a rare class. For RCNNs [3], this presents

an extremely large problem as areas that are not classified

into a labeled class are treated as background and cause the

model to not detect those type of defects [4]. Consequently,
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the resulting labeled data, which has excess repeats of similar

examples and lacks rare examples, is ill-suited for training a

model. Moreover, the labeler often receives little feedback on

the use of their data as to have any knowledge of how to

formally optimize the labeling process. Even if a labeler can

be instructed on how to ignore certain images, compliance

with such instructions can be difficult and vary when dealing

with many labelers. Furthermore, going through every image

in a very large dataset in order to select a subset is infeasible

for a human. Thus, a computerized approach to aid the labeler

in selecting a subset of images for labeling is necessary.

We present a model that provides a ranked list of images

for the labeler to label. The model is trained in an active

learning fashion where one trains the model on a small initial

dataset, uses the model to assist labeling the next batch of

data, and then retrains the model including the new data.

This multi-staged approach is used to continuously update the

order of the images in the dataset to be manually labeled.

Our model ranks the images with the most novel examples

first, thus, creating a diverse set of labeled data which can

be successfully used in the training of an object detector. To

perform this ranking, we employ a deep learning segmentation

model, based on the UNet architecture, that predicts the areas

in an image containing previously unseen data. We focus

our experiments on datasets where the objects are distributed

randomly, vary in morphology within class, and have different

quantity per class. We show that for these datasets we can

achieve high accuracy detection models by labeling only an

algorithmically chosen subset of the images. Our approach

can be expanded to other types of models that use supervised

training and to other types of datasets.

II. PRIOR WORK

Automatic labeling of images has been explored in [5] and

[6]. In this paradigm, one would run a model trained on

previous data to generate the labels and bounding boxes on

the desired dataset, and the labeler would simply modify the

bounding boxes. In the proprietary material domains, such as

semiconductors, automatic labeling approaches fail due to the

lack of previously labeled data of the desired classes. Our

method addresses this problem by requiring the operator to

initially label a small number of images to define the classes

for the overall classification task. This is sufficient to jump

start our model, but it would not be sufficient to construct an

automatic labeling model.

In close relation to our work, [7] performs an active learning

using a latent SVM to select successive batches of data for
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Fig. 1 Schematic of the deep-learning UNet based model

labeling. We perform the same procedure but use a CNN

model. However, we do not present a bounding box with a

class label to the labeler but rather highlight a suggested area

for the labeler to look at. Nonetheless, both approaches aim

to select the most uncertain or unseen unlabelled data.

It is known that CNN detection models suffer from bias

when trained on a imbalanced dataset [8]. Some approaches

modify the learning algorithm of the detector to combat

the class imbalance problem already present in the labeled

data. For example, [9] introduces a Class Rectification Loss

(CRL) regularising algorithm to the CNN learning process

by performing minority class hard samples mining. Reference

[10] uses the Generalized Dice overlap as a loss function.

Unlike these approaches, we curate the training data to include

more rare class examples in the first place, thus, achieving

better class balance in the training dataset. Even further, our

method can be used in conjunction with the aforementioned

training methods to combat the remaining class imbalance.

III. METHODS

We use a Convolutional Neural Network based on the

UNet architecture [11] to sort images for labeling. The major

modification to the UNet was to remove the final softmax

layer that produces the segmentation masks so that we obtain

directly the pixel probabilities per class. We also changed the

convolutional layer padding to match our input size and we

changed the number of feature maps used by the convolutional

layers. The architecture is shown in Fig. 1.

The UNet model is trained on an initial small subset of

images (∼5% of the total set) to establish a baseline where

all objects of interest are labeled with rectangular bounding

boxes. All the pixels inside the bounding boxes of all labeled

objects get grouped into one category “foreground,” and the

rest of the image pixels are treated as “background.” Using this

classification, two input segmentation masks are generated -

one for the background and one for the foreground. We do

not need to use tight segmentation of the foreground objects

because we do enlarge the bounding boxes of the foreground

objects by 10 pixels to eliminate ambiguity of classifying

pixels on the border of bounding boxes. The trained UNet

model produces two probability maps the same size as the

input image: one giving the probability of each pixel belonging

to the background and the other - belonging to the foreground.

Using these two maps, we compute a measure that a pixel is

unseen before Sunseen i.e. neither part of the background nor

the observed foreground. Pixels that belong to examples of a

new class not yet labeled or to novel-looking examples of a

previously labeled class will have a high unseen score.

Sunseen(x, y) = 1− P ((x, y) ∈ bg)− P ((x, y) ∈ fg)

Using the per-pixel unseen scores, an overall image metric

is computed and used for ranking images. A high image metric

would mean that the model has detected that there is something

unseen before in the image, indicating that this image deserves

labeling priority. However, it’s unclear which image should

have higher priority: an image that has few high scoring pixels

or an image that has plenty of low scoring pixels. Therefore,

we compute two metrics: threshold metric Mthresh and alpha

metric Malpha. Threshold metric equals to the number of

pixels that have unseen score above some threshold t. In this

metric, low scoring pixels will have no influence on the metric.

Mthresh =
∑

(x,y)

Sunseen(x, y) > t

The Alpha metric equals to the sum of all unseen scores at

power α. In this metric, all pixels are accounted for but lower

scoring pixels have a lesser influence on the score.

Malpha =
∑

(x,y)

Sunseen(x, y)
α

After the images are ranked using one of these metrics, the

next batch of images to be labeled is produced. The process

iterates in an active learning fashion: the new images are

labeled, the UNet model is retrained, including the newly

available labeled images, and the model is run to produce the

next batch of images to be labeled. After a sufficient amount

of data is labeled, one can train a successful detection model.

This model can also be used to automatically label the rest of

the dataset.

IV. EXPERIMENTS

We applied our approach on semiconductor data to

showcase the broad applicability to proprietary materials

where historical examples of target classes are limited. We

removed partial and blank images from all datasets since

such images are simply an artifact of the imaging system.

We tested on two types of semiconductor wafers - device

wafer, which contain tiles of devices, and bare wafers, which

don’t have any devices. These two types of wafers represent

the morphological extremes of white-light based conventional

inspection microscopy. The image data was captured on the

Nanotronics nSpec R© optical inspection system. Each sample

contained approximately 200 images.

We selected the first 10 images as they appeared in the host

directory and labeled all the defects in each image as it is

conventionally done. Our labeler was a subject matter expert

who determined which types of the objects were considered
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defects. The same expert was used for labeling all datasets

and for evaluating the predictions of the model. The choice of

a single labeler minimized interpersonal bias when comparing

different datasets.

We then trained our UNet model and used it to select

the next 10 images for subsequent labeling using the alpha

metric for ranking. We iterated through this process two times.

Finally, we trained a Faster-RCNN [12] object detection model

on all 30 labeled images. Note, that a different detection

architecture can be used and we obtained similar results with

CenterNet [13].

For comparison with the conventional approach for labeling,

we trained a Faster-RCNN model on sequentially labeled

images. We labeled as many images in the same time that

it took to label the algorithmically selected images, resulting

in approximately the same total number of bounding boxes

labeled. Also, we trained a RCNN model on the entire labeled

dataset where available. All models were evaluated on the

same set-aside and labeled test set. The hyperparameters of

the RCNN were kept the same for all experiments. We trained

on each dataset for 100 epochs. We did not tune parameters to

obtain the optimal RCNN model, but our results are sufficient

for a comparison.

The metrics we used to measure RCNN performance were

precision, recall, and F1 score. Both metrics were calculated

on pre-class basis. The precision equals to the number of

bounding boxes that overlap with the ground truth bounding

boxes more than 50% over the total number of RCNN output

bounding boxes for that class. The recall is the number of

bounding boxes that overlap with the ground truth bounding

boxes more than 50% over the total number of bounding boxes

in the ground truth for that class. The F1 score is computed

using the formula below.

F1 = 2 ∗ precision ∗ recall
precision+ recall

V. RESULTS

We evaluated our model on both types of semiconductor

wafers, including single and multi-class data. We compared

performance against a sequentially labeled subset and a fully

labeled dataset. The amount of total labels in the entire dataset

was far greater than that used by our model.

The results on the device single class dataset are shown in

Table I. The devices on the wafer are considered native and

part of the background. The classification is focused solely

on the particles regardless of their location on the wafer.

This single-class labeling is commonly performed for gross

surface contamination detection and overall particle counting.

The precision and F1 score of the Faster-RCNN model trained

on the initial 10 images start out roughly 20% lower compared

to the fully labeled dataset. The precision and F1 score steadily

increase over the next two iterations, resulting in a difference

of just 10% with the full model. Each iteration includes 10

new images selected by our method for a total of 30 images

in the last. The full dataset consisted of 194 images. Thus, we

achieved a good performance using only 15% of all training

images. The precision and F1 score are expected to naturally

TABLE I
PERFORMANCE ON SINGLE-CLASS DATASET (DEVICE WAFER) OF RCNN

MODEL TRAINED WITH DATA LABELED USING OUR APPROACH AND

WITH THE FULL DATASET LABELED

Num. Images Init Iter1 Iter2 Full

Precision 0.44 0.51 0.59 0.69
Recall 0.86 0.85 0.86 0.87
F1 score 0.58 0.64 0.70 0.77

The results show a steady improvement in the precision and F1 score as
iterations increase.

TABLE II
PERFORMANCE ON SINGLE-CLASS DATASET (DEVICE WAFER) OF RCNN

MODEL TRAINED WITH DATA LABELED USING OUR APPROACH AND

SAME AMOUNT OF DATA LABELED SEQUENTIALLY

Our Model Sequential Model

Precision 0.59 0.47
Recall 0.86 0.84
F1 score 0.70 0.60

improve with more iterations, but future experimentation will

assist in quantifying the number of iterations required to match

or exceed the performance of the full model. Also, the model

shows roughly a 10% increase in the precision and F1 score

compared to sequential labeling on similar amounts of labels

as shown in Figure II. Thus, sorting the images using our

approach outperforms sequential labeling. We expect similar

results if we compare against random image labeling. Note that

for device images in general manual detection of rare objects

is very difficult as the repetitive pattern of the devices creates

a complex background that is harder to differentiate than a

empty bare wafer. This is seen in the low overall precision

and F1 score.

The results on the bare wafer multi-class dataset are

shown in Table III. The dataset contains three classes of

different particle types on the substrate wafer. As seen in

Fig. 2, the classes contain irregular defects of various types,

which are quite different in intensity and morphology. These

objects originate in different parts of the production pipeline

and are grossly different. Their detection is expected to be

uncorrelated. For the initial 10 selected images, the F1 score

starts out 13% and 14% less for class A and B as compared

to the fully labeled set. Over the next two iterations, the F1

score increases for class A and gets to 1.0 which is 0.42 higher

compared to the fully labeled set. For class B, a similar pattern

is shown. We suppose that the poor performance of the full

model is due to the excess number of repetitive examples that

cause the model to overfit. Also, there are a greater number of

labeling errors present in the full dataset which can confuse the

model. For class C, the F1 score increases from the nominal 0,

due to the lack of adequate labels in the first 10 images, to 73%

which is 8% less compared to that of the fully labeled dataset.

The F1 score is also expected to increase with additional

iteration adding new examples of this rare class.

The Faster-RCNN performance can be further increased

through fine tuning of the loss function and data augmentation

of the labeled cases. This work focused exclusively on

unbiased comparison of performance as a function of labels
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Fig. 2 Bare wafer, multi-class dataset with labeled defects. Classes are shown on the bottom row of the figure. The defects vary by type and are separated
by morphology in different classes. The scale bar is 400 microns
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TABLE III
PERFORMANCE ON MULTI-CLASS DATASET (BARE WAFER) OF RCNN
MODEL TRAINED WITH DATA LABELED USING OUR APPROACH AND

WITH THE FULL DATASET LABELED

Class Metric Init Iter1 Iter2 Full

Precision 0.67 0.67 1.0 0.4
A Recall 0.34 1.0 1.0 1.0

F1 score 0.45 0.8 1.0 0.58

Precision 0.4 0.34 1.0 0.4
B Recall 0.4 0.4 0.8 0.8

F1 score 0.4 0.37 0.89 0.54

Precision 0 0.67 0.8 0.95
C Recall 0 0.09 0.67 0.71

F1 score 0 0.15 0.73 0.81

and did not concentrate on optimization of the detection

model. The same Faster-RCNN hyperparameters were used

for all cases.

The time overhead added by training and running the UNet

model for image ranking was on average across the datasets

17 min per iteration. This overhead is insignificant given the

time to label a batch of images, which was on average 3 hours

across datasets. Moreover, in a sparse dataset, the overhead of

skipping through images that contain no or few examples can

be considerable. Our approach will show the labeler the images

that contain a lot of defects which is a big time saver.

In addition to ranking images, the model can highlight the

specific areas of previously unseen data in each image to aid

the labeler. This will decrease the bias of the labeler towards

already seen examples and make it easier to spot the rare class

examples that are so vital for training a successful detection

model.

VI. FUTURE WORK

Future work will focus on outlining and sorting for labeling

the regions of interest (ROIs) inside each image, which will

aid the labeler when given images with complex background

conditions. Such an enhancement to the current approach can

be done by overlaying the unseen score probability map on

top of the image, which highlights the suggested regions of

the image to be labeled as shown in Fig. 3. Higher intensity

denotes greater importance of the region. This overlay can

help with class balancing and detection of rare examples. This

visual aid would be integrated into the labeling application to

drive the labelers focus on the important parts of the image.

Such a probability map would also improve the overall speed

of the image labeling. Additionally, one can also overlay

domain-specific elements such as the device boundaries.

Another improvement to our approach is to calculate a better

image metric for ranking images. We can perform morphology

to combine unseen pixels that belong to a single example. This

will produce a measure that is not dependent on the size of

the examples. We would also want to dynamically adjust the

trade off between a few unseen examples with high confidence

versus many unseen examples with lower confidence based on

the class imbalance of the dataset.

Our approach will provide a great benefit when future

development of the RCNN model enable it to use partially

labeled images. Then, the labeler can avoid exhaustively

labeling the entire image containing many common defects

and instead only label the unseen/rare defects highlighted

by our UNet model. This process will quickly lead to a

high-performance detection model.

VII. CONCLUSION

Manual image labeling and classification is the

underpinning of all image processing pipelines. Although

automatic labeling continues to improve, it is yet to fully

replace manual labeling and cannot be applied in all domains.

The presented model focused on sorting images for manual

labeling and identifying only select images to be manually

labeled. We show that in a single-class experiment the

presented approach requires a small amount of the fully

labeled dataset to achieve similar detection performance.

We also show that in the case of the multi-class model on

semiconductor devices excessive labeling of the full dataset

produces degraded results compared to two iterations of

images labeled using our approach. Labeling of only selected

images decreases overfitting and allows for high detection

rates. This work shows how a UNet style model can be

used to assist manual labeling by decreasing the amount of

effort while improving overall performance of deep learning

pipelines trained on the labeled data.
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Fig. 3 Probability Map of the Device. The device image is shown in monochrome. The overlaid Unet probability map is shown as a purple heatmap. Higher
intensity indicates a higher probability. The yellow arrows point to sample defects in the image
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